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In the past years there has been significant research on developing compact data structures
for summarizing large data streams. A family of such data structures is the so-called
sketches. Sketches bear similarities to the well-known Bloom filters [B.H. Bloom, Space/
time trade-offs in hash coding with allowable errors, Communications of ACM, 13 (7)
(1970), 422-426] and employ hashing techniques to approximate the count associated
with an arbitrary key in a data stream using fixed memory resources. One limitation of
sketches is that when used for summarizing long data streams, they gradually saturate,
resulting in a potentially large error on estimated key counts. In this work, we introduce
two techniques to address this problem based on the observation that real-world data
streams often have many transient keys that appear for short time periods and do not
re-appear later on. After entering the data structure, these keys contribute to hashing col-
lisions and thus reduce the estimation accuracy of sketches. Our techniques use a limited
amount of additional memory to detect transient keys and to periodically remove their
hashed values from the sketch. In this manner the number of keys hashed into a sketch
decreases, and as a result the frequency of hashing collisions and the estimation error
are reduced. Our first technique in effect slows down the saturation process of a sketch,
whereas our second technique completely prevents a sketch from saturating.! We demon-
strate the performance improvements of our techniques analytically as well as experimen-
tally. Our evaluation results using real network traffic traces show a reduction in the
collision rate ranging between 26.1% and 98.2% and even higher savings in terms of estima-
tion accuracy compared to a state-of-the-art sketch data structure. To our knowledge this
is the first work to look into the problem of improving the accuracy of sketches by mitigat-
ing their saturation process.
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1. Introduction appeared for a key. Sketches are summary data structures

that can estimate the count associated with a key, a

In the past several years there has been significant re-
search on developing data structures for summarizing
massive data streams and on computing desired statistics
from the summaries created. One statistic that is com-
monly sought is the total count associated with a key
in a data stream, i.e., the sum of the values that have
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T The phrase “eternal sunshine” in the title reflects that our techniques
mitigate or halt the saturation process of a sketch.
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process that is also called answering point queries. In net-
working, sketches have known applications in estimating
the size of the largest traffic flows in routers [5] and
NetFlow/IPFIX collectors [9], in detecting changes in traffic
streams [10,16], in adaptive traffic-sampling techniques
[12], and in worm fingerprinting [17]. More generally,
sketches find applications in systems that require online
processing of large data sets.

Sketches are a family of data structures that use the
same underlying hashing scheme for summarizing data.
They differ in how they update hash buckets and use
hashed data to derive estimates. Among the different
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sketches, the one with the best time and space bounds is
the so-called count-min sketch [4]. Sketches bear similari-
ties to the well-known Bloom filters [2] in that both em-
ploy hashing to summarize data, have fixed memory
requirements, and provide approximate answers to the
queries they are designed for.

An inherent problem with sketches is that keys may
collide, namely, hash to the same bucket, producing errors
in the estimated counts. This particularly affects long data
streams, for which sketches gradually saturate, leading to
more collisions and to lower estimation accuracy. In this
work we introduce two techniques to address this prob-
lem. Our techniques are based on the observation that for
real-world data streams, the saturation of sketches is dri-
ven by a large number of transient keys that are hashed
into the data structure and produce many collisions. These
transient keys often are not interesting either because they
have a small size or because they become inactive after a
certain point in time. The techniques effectively detect
such keys and remove their hashed values from the sketch,
decreasing in this way the number of collisions and the
estimation error. The first technique uses a small addi-
tional memory to detect certain transient keys and to re-
move their hashed values from the sketch. Transient keys
that are not detected remain in the sketch, and thus, sketch
saturation slows down but does not halt completely. The
second technique uses a larger additional memory to effec-
tively halt the saturation process by posing an upper
bound on the number of keys that are present in the data
structure at any given point in time.

Our techniques are useful for applications that are not
interested in transient keys, but rather focus on the active
or recent keys of a data stream. In the context of network
monitoring and management, a number of such applica-
tions exist that, for example, monitor the active flows in
a network, identify important events, like anomalies, and
manipulate monitored active flows, namely, for traffic
engineering purposes.

We describe and analyze our techniques with respect to
the state-of-the-art count-min sketch.? Using traffic traces
from a large enterprise network, we illustrate that, com-
pared with the count-min sketch, our techniques result in
lower collision rate and increased estimation accuracy.

We structure the remainder of this paper as follows: in
the next section we provide background information on
sketches and introduce our notation. Then, in Section 3
we summarize related research. In Section 4 we introduce
our two techniques. We evaluate the performance of our
techniques and compare it with that of existing schemes
in Section 5. Finally, we conclude our paper and outline fu-
ture directions in Section 6.

2. Preliminaries

In this section we first outline the data-streaming mod-
el that forms the input to a sketch data structure, and then
provide a detailed description of the count-min sketch.

2 Though we focus on the count-min sketch, our techniques are generic
and can be used with other sketch variants as well.

2.1. Data-streaming model

A data stream I of running length n is a sequence of n
tuples. The t-th tuple is denoted as (k.,u,), where k; is a
key used for hashing and u, is a value associated with the
key:

I= (ko,uo), (ki,u1),..., (ke,ue), ..., (Kno, Unoq).

The value u; is a positive number, which results in mono-
tonically increasing key counts. This data-streaming model
is called the cash register model [15].

2.2. The count-min sketch

The count-min sketch i s a two-dimensional array T/[i][j]
with d rows,i=1,...,d, and w columns, j=1,...,w. Each
of the d x w array buckets is a counter that is initially set to
zero. The rows of T are associated with d pairwise indepen-
dent hash functions hy,...,hy from keys to 1,...,w. In
Fig. 1 we illustrate the count-min sketch data structure.

Update procedure. An incoming key k. is hashed with
each of the hash functions hy,...,hy, and the value u; is
added to the counters T[i][h;i(k;)],i=1,....,d.

Estimation procedure. Given a query for key k;, the
count-min sketch returns the minimum of the counters
to which k; hashes, so that the estimated count for a key

Discussion. First, note that multiple keys may hash to
the same bucket and thus, the count of a bucket may over-
estimate the true size of a key. For this reason the estima-
tion procedure returns the minimum value of the
counters a key is hashed to. Assume for a moment that
the count-min sketch has a single row, i.e., d = 1. If two
keys hash to the same counter, the counter will overesti-
mate the count of the two keys. By adding more hash buck-
ets in each row, i.e., increasing the number of columns w, it
becomes less likely that two keys collide and thus, the
number of collisions and the resulting expected error de-
crease. Accordingly, the parameter w primarily manipu-
lates the expected error of the count-min sketch. If we
increase the number of rows d of the sketch, then the prob-
ability that a given key has a large error, i.e., collides with
many other keys, decreases. This is because as we increase
the number of rows d, it becomes less likely that a given
key collides with many other keys in all of the d buckets
it is hashed to. Therefore, the parameter d mainly controls
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Fig. 1. The count-min sketch data structure.
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