
ELSEVIER

Contents lists available at ScienceDirect

Industrial Crops and Products

journal homepage: www.elsevier.com/locate/indcrop

Short communication

Systematic study on substituting petroleum-based polyols with soy-based polyol for developing renewable hybrid biofoam by self-catalyzing/rising process

Fuqing Zhang, Xiaogang Luo*

Key Laboratory of Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430073, Hubei, China

ARTICLE INFO

Article history: Received 23 May 2015 Received in revised form 22 August 2015 Accepted 28 August 2015 Available online 7 September 2015

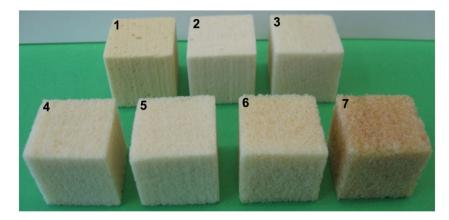
Keywords:
Polyurethane biofoam
Soybean phosphate ester polyol
Self-catalyzing

ABSTRACT

The future depletion of petroleum resources is driving development of sustainable alternatives based on biomass materials. This work is aimed at developing rigid polyurethane biofoam with similar properties to commercial foam for the potential application in thermal insulation. we designed a hybrid biofoam by self-catalyzing/rising process from substituting petroleum polyol with soy polyol.

© 2015 Published by Elsevier B.V.

Rigid polyurethane foams are widely used in a variety of industries, because of their low thermal conductivity, good adhesion, good dimensional stability, and excellent mechanical strength even at low density (Abdel Hakim et al., 2011; Shimizu et al., 2012). With an increasing awareness of the environment and the future availability of petroleum resources, it has become important to look for alternative processes and raw materials from renewable or sustainable resources (Septevani et al., 2015). The polyols that play an important role in the urethane foam industry are conventionally derived from petrochemical crude oils and coals. In view of the need for environmentally friendly aspects and sustainability, a way to prepare polvols from vegetable oils such as soybean, canola, castor. and palm oils is of increasing importance. This interest is economically driven because vegetable oils are renewable, easily processed, can be made biodegradable, and offer both cost and performance that is comparable to petroleum-based polyols (Ristić et al., 2012; Xia and Larock, 2011; Yang et al., 2012).


Producing polyols from soybean oil means using a renewable resource, which is abundant in supply and relatively low in cost. These new chemical processes are aimed at reducing the environmental footprint, in particular the production of carbon dioxide, which is the most notable greenhouse gas. The polyurethanes

produced from these polyols can compete in many aspects with polyurethanes derived from petrochemical polyols (Javni et al., 2003). About 40% of standard petroleum polyols in spray-on polyurethane applications have now been replaced by soybean oil-based polyols (Pfister and Larock, 2010), the cost of which is approximately 20% to 30% lower than the conventional polyols.

In this communication, rigid composite biofoams (Fig. 1) from a combination of a petroleum-based polyol (Jeffol A-630) and a soy-based polyol at various weight ratios were prepared using a self-catalyzing/rising process. Soybean phosphate ester polyol (SOPEP) was prepared by hydrolysis of epoxidized soybean oil (ESO) with phosphoric acid as a catalyst (Zhong et al., 2001), and incorporated into low volatile organic compounds (VOC) industrial foam because of its relatively high hydroxyl number. Jeffol A-630 polyol is an amine-based, low-viscosity triol developed specifically as cross linker for urethane foams. It is used primarily in rigid spray polyurethane foam systems based on aromatic-amino polyols and polymeric isocyanates and is known as polyisocyanurate (PIU) foam. These foams are chemically and thermally more stable than polyurethane foams (Sharma and Kundu, 2008). The schematic illustration of reaction and macromolecular network structure of the obtained polyurethane biofoams is shown in Fig. 2. An interpenetrating polymer networks (IPN) biofoam is formed by using the mixture of above two polyols to react with polyisocyanurate simultaneously. SOPEP and Jeffol can react respectively with polymeric methyldiphenyl diisocyanate (pMDI) to form polyisocyanurate prepolymer first, and then react with rest of the polyol,

^{*} Corresponding author at: School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430073, Hubei, China. Fax: +86 139 86270668.

E-mail addresses: xgluo@wit.edu.cn, xgluo0310@hotmail.com (X. Luo).

Fig. 1. Photographs of the biofoam samples.

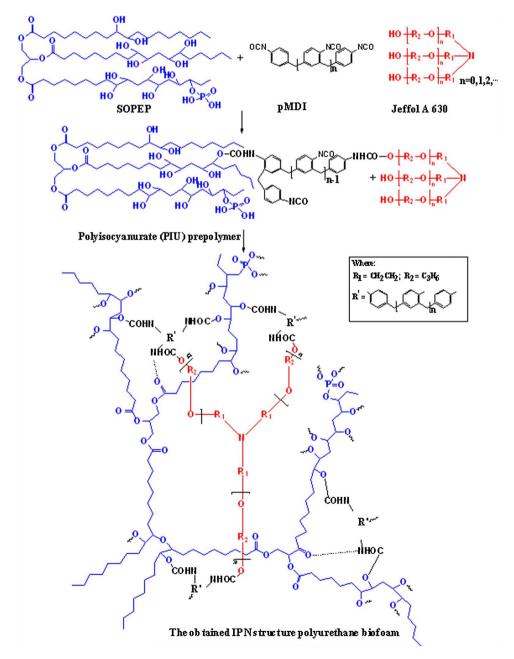


Fig. 2. Schematic illustration of reaction and macromolecular network structure of the obtained polyurethane biofoams.

Download English Version:

https://daneshyari.com/en/article/4512678

Download Persian Version:

https://daneshyari.com/article/4512678

<u>Daneshyari.com</u>