
Designing an overload control strategy for secure
e-commerce applications

Jordi Guitart *, David Carrera, Vicenç Beltran, Jordi Torres, Eduard Ayguadé

Barcelona Supercomputing Center (BSC), Computer Architecture Department – Technical University of Catalonia,

C/Jordi Girona 1-3, Campus Nord UPC, Mòdul C6, E-08034 Barcelona, Spain

Received 19 October 2006; received in revised form 9 March 2007; accepted 29 May 2007
Available online 6 July 2007

Responsible Editor: E. Cohen

Abstract

Uncontrolled overload can lead e-commerce applications to considerable revenue losses. For this reason, overload pre-
vention in these applications is a critical issue. In this paper we present a complete characterization of secure e-commerce
applications scalability to determine which are the bottlenecks in their performance that must be considered for an over-
load control strategy. With this information, we design an adaptive session-based overload control strategy based on SSL
(Secure Socket Layer) connection differentiation and admission control. The SSL connection differentiation is a key factor
because the cost of establishing a new SSL connection is much greater than establishing a resumed SSL connection (it
reuses an existing SSL session on the server). Considering this big difference, we have implemented an admission control
algorithm that prioritizes resumed SSL connections to maximize the performance in session-based environments and
dynamically limits the number of new SSL connections accepted, according to the available resources and the current num-
ber of connections in the system, in order to avoid server overload. Our evaluation on a Tomcat server demonstrates the
benefit of our proposal for preventing server overload.
� 2007 Elsevier B.V. All rights reserved.

Keywords: Security; SSL; e-commerce; Application servers; Overload control; Service differentiation; Admission control; Session-based;
Scalability characterization

1. Introduction

In recent times, e-commerce applications have
become commonplace in current web sites. In these
applications, all the information that is confidential

or has a market value must be carefully protected
when transmitted over the open Internet. Security
between network nodes over the Internet is tradi-
tionally provided using HTTPS [1]. With HTTPS,
which is based on using HTTP over SSL (Secure
Socket Layer [2]), you can perform mutual authen-
tication of both the sender and receiver of messages
and ensure message confidentiality. Although pro-
viding these security capabilities does not introduce
a new degree of complexity in web applications

1389-1286/$ - see front matter � 2007 Elsevier B.V. All rights reserved.

doi:10.1016/j.comnet.2007.05.010

* Corresponding author. Tel.: +34 93 405 40 47.
E-mail addresses: jguitart@ac.upc.edu (J. Guitart), dcarrera@

ac.upc.edu (D. Carrera), vbeltran@ac.upc.edu (V. Beltran),
torres@ac.upc.edu (J. Torres), eduard@ac.upc.edu (E. Ayguadé).

Computer Networks 51 (2007) 4492–4510

www.elsevier.com/locate/comnet

mailto:jguitart@ac.upc.edu
mailto:dcarrera@ ac.upc.edu
mailto:dcarrera@ ac.upc.edu
mailto:vbeltran@ac.upc.edu
mailto:torres@ac.upc.edu
mailto:eduard@ac.upc.edu


structure, it increases remarkably the computation
time needed to serve a connection, due to the use
of cryptographic techniques, becoming a CPU-
intensive workload.

At the same time, current sites are subject to
enormous variations in demand, often in an unpre-
dictable fashion, including flash crowds that cannot
be easily processed. For this reason, the servers that
host the sites must be ready to handle situations
with a large number of concurrent clients.

Dealing with situations with a large number of
concurrent clients and/or with a workload that
demands high computational power (for instance
secure workloads) can lead a server to overload
(i.e. the volume of requests for content at a site tem-
porarily exceeds the capacity for serving them and
renders the site unusable). During overload condi-
tions, the response times may grow to unacceptable
levels, and exhaustion of resources may cause the
server to behave erratically or even crash, causing
denial of services. In e-commerce applications,
which are heavily reliant on security, such server
behavior could translate to sizable revenue losses.

Overload prevention is a critical goal so that a
system can remain operational in the presence of
overload even when the incoming request rate is sev-
eral times greater than the system capacity, and at
the same time is able to serve the maximum number
of requests during such overload, while maintaining
response times at acceptable levels. With these
objectives in mind, several mechanisms have been
proposed to deal with overload, such as admission
control, request scheduling, service differentiation,
service degradation and resource management.

However, the design of a successful overload pre-
vention strategy must be preceded by a complete
characterization of the application server scalability,
which should consist of something more complex
than simply measuring the application server per-
formance with different number of clients and deter-
mining the load levels that overload the server. A
complete characterization should also supply the
causes of this overload, in order to identify which
factors are the bottlenecks in the application ser-
ver’s performance that must be considered in an
overload prevention strategy. For this reason, this
characterization requires powerful analysis tools
that allow an in-depth analysis of the application
server’s behavior and its interaction with the other
system elements (including distributed clients, a
database server, etc.). These tools must support
and consider all the levels involved in the execution

of web applications if they want to provide mean-
ingful performance information to the administra-
tors because the origin of performance problems
can reside in any of these levels or in the interaction
between them.

Additionally, in many web sites, especially in
e-commerce, most of the applications are session-
based. A session contains temporally and logically
related request sequences from the same client. Ses-
sion integrity is a critical metric in e-commerce. For
an online retailer, the higher the number of sessions
completed, the higher the amount of revenue that is
likely to be generated. The same statement cannot
be made about individual request completions. Ses-
sions that are broken or delayed at some critical
stages, like checkout and shipping, could mean loss
of revenue to the web site. Sessions have distinguish-
able features from individual requests that compli-
cate the overload control. For this reason, simple
admission control techniques that work on a per
request basis, such as limiting the number of threads
in the server or suspending the listener thread dur-
ing overload periods, may lead to a large number
of broken or incomplete sessions when the system
is overloaded (despite the fact that they can help
to prevent server overload).

This paper contributes a complete characteriza-
tion of the scalability of Java application servers
running secure e-commerce applications. We have
decided to focus on the Tomcat [3] application ser-
ver, which serves as a reference implementation of
the Sun Servlet and JSP specifications. The charac-
terization is divided in two parts. The first part con-
sists of measuring Tomcat’s vertical scalability (i.e.
adding more processors) when using SSL and deter-
mining the impact of adding more processors when
the server is overloaded. The second part involves
a detailed analysis of the server’s behavior using a
performance analysis framework, in order to deter-
mine the causes of the server overload when running
with different numbers of processors. This analysis
demonstrates the convenience of developing a strat-
egy to prevent server overload, and identifies the fac-
tors that must be considered for its implementation.

With this information, we design an overload
control strategy that is based on SSL connection
differentiation and admission control. SSL connec-
tion differentiation is accomplished by proposing a
possible extension of the Java Secure Sockets Exten-
sion [4] (JSSE) package, which implements a Java
version of the SSL protocol, to distinguish between
SSL connections depending on whether the connection

J. Guitart et al. / Computer Networks 51 (2007) 4492–4510 4493



Download English Version:

https://daneshyari.com/en/article/451356

Download Persian Version:

https://daneshyari.com/article/451356

Daneshyari.com

https://daneshyari.com/en/article/451356
https://daneshyari.com/article/451356
https://daneshyari.com

