Available online at www.sciencedirect.com

ScienceDirect Computer
Networks

www.elsevier.com/locate/comnet

o gv

I

ELSEVIER Computer Networks 51 (2007) 3673-3692

Performance analysis of a client-side caching/prefetching
system for Web traffic

Abdullah Balamash ?, Marwan Krunz **, Philippe Nain °

& Department of Electrical and Computer Engineering, University of Arizona, Tucson, AZ 85721, USA
> INRIA, 06902 Sophia Antipolis, France

Received 6 May 2006; received in revised form 7 January 2007; accepted 15 March 2007
Available online 2 April 2007

Responsible Editor: N. Bartolini

Abstract

Network congestion remains one of the main barriers to the continuing success of the Internet. For Web users, conges-
tion manifests itself in unacceptably long response times. One possible remedy to the latency problem is to use caching at
the client, at the proxy server, or within the Internet. However, Web documents are becoming increasingly dynamic (i.e.,
have short lifetimes), which limits the potential benefit of caching. The performance of a Web caching system can be dra-
matically increased by integrating document prefetching (a.k.a. “proactive caching’) into its design. Although prefetching
reduces the response time of a requested document, it also increases the network load, as some documents will be unnec-
essarily prefetched (due to the imprecision in the prediction algorithm). In this study, we analyze the confluence of the two
effects through a tractable mathematical model that enables us to establish the conditions under which prefetching reduces
the average response time of a requested document. The model accommodates both passive client and proxy caching along
with prefetching. Our analysis is used to dynamically compute the “optimal” number of documents to prefetch in the sub-
sequent client’s idle (think) period. In general, this optimal number is determined through a simple numerical procedure.
Closed-form expressions for this optimal number are obtained for special yet important cases. We discuss how our
analytical results can be used to optimally adapt the parameters of an actual prefetching system. Simulations are used
to validate our analysis and study the interactions among various system parameters.
© 2007 Elsevier B.V. All rights reserved.

Keywords: Web modeling; Caching; Proxy; Prefetching; Multi-fractal traffic

* This work was supported by the National Science Foundation 1. Introduction

through Grant ANI-0095626. Any opinions, findings, and

conclusions or recommendations expressed in this material are 1.1. Motivation and related work
those of the author(s) and do not necessarily reflect the views of
the National Science Foundation. Web users can experience response times in the

* Corresponding author.

E-mail addresses: balamash@ece.arizona.edu (A. Balamash), order of several seconds. SI.lCh response times
krunz@ece.arizona.edu (M. Krunz), nain@sophia.inria.fr (P. are often unacceptable, causing some users to
Nain). request the delayed documents again. This, in turn,

1389-1286/$ - see front matter © 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.comnet.2007.03.004

mailto:balamash@ece.arizona.edu
mailto:krunz@ece.arizona.edu
mailto:nain@sophia.inria.fr

3674 A. Balamash et al. | Computer Networks 51 (2007) 3673-3692

aggravates the situation and further increases the
load and the perceived latency. Caching is consid-
ered an effective approach for reducing the response
time by storing copies of popular Web documents in
a local cache, a proxy server cache close to the end
user, or even within the Internet. However, the ben-
efit of caching diminishes as Web documents
become more dynamic [21]. A cached document
may be stale at the time of its request, given that
most Web caching systems in use today are passive
(i.e., documents are fetched or validated only when
requested).

Prefetching (or proactive caching) aims at over-
coming the limitations of passive caching by proac-
tively fetching documents in anticipation of
subsequent demand requests.' Several studies have
demonstrated the effectiveness of prefetching in
addressing the limitations of passive caching (e.g.
[14,17,22,23,27,31,32,35,42,46,49]). Prefetched doc-
uments may include hyperlinked documents that
have not been requested yet as well as dynamic
objects [42,37]. Stale cached documents may also
be updated through prefetching. In principle, a pre-
fetching scheme requires predicting the documents
that are most likely to be accessed in the near future
and determining how many documents to prefetch.
Most research on Web prefetching focused on the
prediction aspect. In many of these studies (e.g.
[14,35]), a fixed-threshold-based approach is used,
whereby a set of candidate files and their access
probabilities are first determined. Among these can-
didate files, those whose access probabilities exceed
a certain prefetching threshold are prefetched.
Other prefetching schemes involve prefetching a
fixed number of popular documents [32]. Teng
et al. [43] proposed an integrated Web caching
and prefetching (IWCP) policy, which considers
both demand requests and prefetched documents
for caching based on a normalized profit function.
The work in [30] focuses on prefetching pages of
query results of search engines. In [47], the authors
proposed three prefetching algorithms to be imple-
mented at the proxy server: (1) the hit-rate-greedy
algorithm, which greedily prefetches files so as to
optimize the hit rate; (2) the bandwidth-greedy algo-
rithm, which optimizes bandwidth consumption;
and (3) the H/B-greedy algorithm, which optimizes
the ratio between the hit rate and bandwidth con-

! The term demand request is used throughput the paper to refer
to a user’s request for a document that needs to be displayed right
away.

sumption. The negative impact of prefetching on
the average access time was not considered.

Most of the above works rely on prediction algo-
rithms that compute the likelihood of accessing a
given file. Such computation can be done by
employing Markovian models [20,35,41,36]. Other
works rely on data mining for prediction of popular
documents [38,48,29,34].

Numerous tools and products that support Web
prefetching have been developed [1-4,6,7,9,10].
Wcol [3] prefetches embedded hyperlinks and
images, with a configurable maximum number of
prefetched objects. PeakJet2000 [10] is similar to
Wecol with the difference that it prefetches objects
only if the client has accessed the object before.
NetAccelerator [9] works as PeakJet2000, but does
not use a separate cache for prefetching as in Peak-
Jet2000. Google’s Web accelerator [4] collects user
statistics, and based on these statistics it decides
on what links to prefetch. It also can take a pre-
fetching action based on the user’s mouse move-
ments. Web browsers based on Mozilla Version
1.2 and higher also support link prefetching [1].
These include Firefox [6], FasterFox [2], and Net-
scape 7.01+ [7]. In these browsers, Web developers
need to include html link tags or html meta-tags
that give hints on what to prefetch.

In terms of protocol support for prefetching,
Davison et al. [19] proposed a prefetching scheme
that uses a connectionless protocol. They assumed
that prefetched data are carried by low-priority dat-
agrams that are treated differently at intermediate
routers. Although such prioritization is possible in
both IPv6 and IPv4, it is not yet widely deployed.
Kokku et al. [26] proposed the use of the TCP-Nice
congestion control protocol [45] for low-priority
transfers to reduce network interference. They used
an end-to-end monitor to measure the server’s spare
capacity. The reported results show that careful
prefetching is beneficial, but the scheme seems to
be conservative because it uses an additive increase
(increase by 1), multiplicative decrease policy to
decide on the amount of data to prefetch. Crovella
et al. [17] showed that a rate-control strategy for
prefetching can help reduce traffic burstiness and
queuing delays.

Most previous prefetching designs relied on a
static approach for determining the documents to
prefetch. More specifically, such designs do not con-
sider the state of the network (e.g., traffic load) in
deciding how many documents to prefetch. For
example, in threshold-based schemes, a// documents

Download English Version:

https://daneshyari.com/en/article/451359

Download Persian Version:

https://daneshyari.com/article/451359

Daneshyari.com

https://daneshyari.com/en/article/451359
https://daneshyari.com/article/451359
https://daneshyari.com

