
A two-camera machine vision in predicting alpha-amylase activity in
wheat

B.L. Shrestha, Y.M. Kang, O.D. Baik*

Department of Chemical and Biological Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada

a r t i c l e i n f o

Article history:
Received 23 April 2016
Received in revised form
1 July 2016
Accepted 19 July 2016
Available online 21 July 2016

Keywords:
Smart cameras
Machine vision
Wheat
Alpha-amylase

a b s t r a c t

Sprout damage in wheat is a serious problemworldwide because damaged wheat kernels contain alpha-
amylase, an enzyme that causes poor baking quality of wheat. A two-camera machine vision (MV) with a
neural network was implemented to quantify alpha-amylase activity in wheat using 16 visual properties
of the kernels. Kernels were separated at image level using the marker-controlled segmentation algo-
rithm before the properties (color, texture, and shape and size) of dorsal and ventral sides of kernels were
extracted. Alpha-amylase activity in wheat was assessed analytically. The neural networks were trained,
validated, and tested using the visual properties as the inputs and alpha-amylase activity as the output.
The trained neural network predicted alpha-amylase activity with an accuracy of 6913 U/L (rmse) and R2

value of 0.72 for the wheat samples with alpha-amylase activity ranging over 178 to 28935 (U/L). Dif-
ferences between visual properties of wheat samples calculated from the top and the bottom images was
less than 0.5%. Light stability in time and influence of temperature on the cameras' color stability were
less than 2% of the mean values. The challenges associated with the system, and recommendations to
improve the system accuracy and robustness, and to decrease the system cost are presented.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Alpha-amylase is a key enzyme found in the sprout-damaged
wheat. Quantification of this enzyme helps segregating wheat
with varying degrees of sprout damage. Sprout-damaged wheat
possesses poor baking qualities. Since wheat is one of the most
important cereal grains of theworld with a global production of 710
million metric tons (2013/2014), the sprout damage in wheat is an
important problem worldwide (Statista, 2015).

Hagberg falling number (HFN) is currently used to quantify
sprout damage in wheat. It is measured with the Hagberg test
method (Perten, 1964), which is based on the kernels' alpha-
amylase activities. Good quality wheat has a low alpha-amylase
activity and a high HFN. For example, a HFN of 350 s or higher in-
dicates low enzyme activity and sound wheat quality. This test
provides an objective measurement of wheat quality, but the test is
more suitable for laboratory use than on-site use at primary,
transfer, or terminal elevators because it requires many steps in
sample preparation, for example, grinding, moisture adjustment,
weighing, etc. and these steps require expertise. This test method is

destructive and each test takes about 10 min to complete. Distilled
water and calibration oil are required reagents.

Researchers have studied the correlation between whole grain
area or endosperm cavity area and alpha-amylase activity in wheat
kernels. Kindred et al. (2005) reported that the area of wheat kernel
was not sufficient to determine the latematurity endosperm alpha-
amylase activity. Evers et al. (1995) concluded that it was difficult to
correlate kernel size to the enzyme activities in grains based upon a
handful of experiment, and they suggested that a robust experi-
mental base was important from which the deductions could be
made. Farrell and Kettlewell (2008) demonstrated that the pre-
mature alpha-amylase activity was related with the increase in
the grain area in some cases, but they concluded that there was no
evidence of a mechanistic link between high alpha-amylase activity
and the area. Use of only grain size and/or the endosperm cavity
area to measure alpha-amylase activity seemed to be farfetched.

There is a serious drawback using a machine vision comprising
of a single camera or a flatbed scanner. The system can easily miss
part of a germ or even awhole germ unless the seeds are placed and
spread manually on the sample tray. The impurities in the sample
can also block some seeds from view. Each seed in the sample must
be overturned to capture the image of the other side of the seed.
This process is not only tedious, but it also creates a problem in
maintaining identical kernels' IDs because the IDs are sensitive to
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the relative position of the kernels to the left edge of the whole
image. Szczypinski et al. (2015) placed the seeds manually in a
flatbed scanner to identify barley varieties. They reported that the
identification accuracy could be improved significantly by using
both sides of the seeds.

Because the various objective methods summarized above have
had only limited success, visual inspection by a grain inspector has
been the practice for a long time and continue to be used until a
reliable objective method is developed. However, visual inspection
has serious drawbacks of its own, that is, this method is purely
subjective in nature, and therefore, a better approach is needed.

This work presents a machine vision that uses two cameras to
“look” at both dorsal and ventral sides of kernels simultaneously.
Since the area of wheat or germ area was not sufficient to predict
the alpha-amylase activity in the wheat, this vision system was
designed to extract 16 visual properties including color, texture,
and shape and size of sound, sprout-damaged (SPTD) and severely
sprout-damaged (SEVSPTD) wheat kernels. These features and
analytically measured alpha-amylase activity (U/L) were then used
to model a neural network for the objective quantification of the
enzyme in wheat. Therefore this technique was an integration of
“visual inspection” and objective method in quantifying the alpha-
amylase activity in wheat.

It is critical to segment fused kernels in a digital image before
extracting the visual properties of individual seeds. Many re-
searchers have developed and/or tested segmentation algorithms
to segment fused kernels in digital images (Paliwal and Wang,
2006; Kiratiratanapruk and Sinthupinyo, 2011; Hua et al., 2007;
Hobson et al., 2009; Visen et al., 2001; Faessel and Courtois,
2009; Yan et al., 2011). These algorithms disjoined fused kernels
with accuracies ranging over 55.4e100% depending upon the
shapes and sizes of the grains, the number of grains in a cluster, and
the way the grains formed the clusters. In summary, the success of
segmentation algorithms appeared to be depended largely on the
particular target objects and the background.

Watershed transformation algorithm always produces closed
contours for the segmented objects, and is computationally feasible
(Beucher and Lantuejoul, 1979) but the technique usually suffers
with oversegmentation because it identifies the objects using the
minimum gray values, and numerousminima are usually present in
images due to the nature of the images and noises. Meyer and
Beucher (1990) developed a marker-controlled segmentation
method based on the internal (for the objects) and the external (for
the background) markers. Later, Meyer (1994) extended their
1990's work to make it suitable for implementing in hardware. This
latest work of Meyer was tailored to use in this research.

The objective of this study was to test a two-camera machine
vision (MV) and a neural network for an objective quantification of
alpha-amylase activity in wheat kernels for speed, accuracy, and
portability. It will especially be suitable in primary and terminal
elevators where space for specialized laboratory equipment is
limited, and the ability to segregate deliveries with rapid turn-
around is critical.

2. Materials and methods

2.1. Sprout-damaged wheat

Our industrial partner, Viterra Inc., Regina, Canada had provided
us with a 40 kg of #1 Canadian Western Red Spring (CWRS) wheat
for the project because this variety of wheat was common in
western Canadian wheat deliveries. The initial moisture content
(MC) of the wheat was 15.2 ± 0.4% wet basis (%, w. b.). All MCs
mentioned in this paper are based on %, w. b. unless otherwise
stated, and were determined following ASABE Standards (ASABE
R2008).

A total of 600 wheat kernels were considered. Twenty-five of
sound kernels were hand-picked from the wheat lot at initial MC,
and placed on aWhatman filter no. 2 fitted in a 9 cm-diameter petri
dish and saturated with 2 ml of distilled water. The petri dish was
put in a sealed plastic bag to prevent desiccation of the filter paper
during the incubation period. The kernels were incubated in a
temperature-humidity chamber (SH-641, Espec Corp., Osaka,
Japan) set at 15 �C and 65% RH. A number of samples were prepared
following the same procedure. The alpha-amylase activities of the
wheat kernels that were incubated (germinated) for 3 d had a sharp
transition, and fell between the alpha-amylase activities of the
kernels incubated for 0e2 d (low), and 4e7 d (high). Therefore, the
kernels that were incubated in 0e2, 3, and 4e7 d were assigned to
sound (SND), SPTD and SEVSPTD classes respectively. The wet
germinated kernels were dried at 22 �C to their initial weight
(0.79 ± 0.05 g, triplicate) to ensure that the sprout-damaged ker-
nels were back to the initial MC safe for storage (15.2%). The sam-
ples thus prepared were then stored in the sealed plastic bags at
4 �C.

2.2. Machine vision

Fig. 1 is the block diagram of the MV developed in this work. It
consisted of two color smart cameras (RL04C-OC, 7 Watts, Ximea
GmbH, HansestraBe 81, 48165 Mὕnster, Germany) each embedded
with a processor (Intel Atom Z510 1.1 GHz), a sensor (WVGA, active

Nomenclature

Symbols/abbreviations and Meaning
ANN Artificial neural network
B Blue
cbr Closing by reconstruction
CC Connected component
CWRS Canadian western red spring
DCOM Distributed component object module
FN Falling number
FOV Field of view
Ftop Measured feature value using the top camera
Fbot Measured feature value using the bottom camera
G Green

GUI Graphical user interface
ID Identification
imbot Image produced from the bottom camera
imtop Image produced from the top camera
Lum Luminance
MC Moisture content
MV Two-camera machine vision
obr Opening by reconstruction
R Red
SEVSPTD Severe sprout-damaged
SND Sound
SPTD Sprout-damaged
std Standard deviation
U/L Units per liter
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