

Contents lists available at ScienceDirect

Postharvest Biology and Technology

journal homepage: www.elsevier.com/locate/postharvbio

Alternative management technologies for postharvest disease control: The journey from simplicity to complexity

Michael Wisniewski^{a,*}, Samir Droby^b, John Norelli^a, Jia Liu^c, Leonardo Schena^d

^a U.S. Department of Agriculture–Agricultural Research Service (USDA-ARS), 2217 Wiltshire Road, Kearneysville, WV 25430, United States

^b Department of Postharvest Science of Fresh Produce ARO, The Volcani Center P.O. Box 6, Bet Dagan 50250, Israel

^c School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009, China

^d Dipartimento di Agraria, Università Mediterranea di Reggio Calabria, Località Feo di Vito, 89124 Reggio Calabria, Italy

ARTICLE INFO

Article history: Received 7 December 2015 Received in revised form 23 May 2016 Accepted 25 May 2016 Available online 11 June 2016

Keywords: Biological control Multiple decrement concept Natural products Physical treatments

ABSTRACT

Finding safe and effective alternatives to synthetic fungicides for reducing postharvest losses of harvested commodities has been a focus of much research over the past three decades. Identifying alternatives that are widely accepted and commercially viable has, however, been a challenge. The search to identify alternative approaches to postharvest disease management must be viewed in relation to a complex regulatory environment, the need to address disease problems in a wide array of commodities and conditions, industry and consumer acceptance, and last but not least, commercial viability. In order for companies to invest in new technologies, they must be able to clearly see both the value of a product and the financial return on their investment. The present review attempts to highlight how the search for alternative postharvest disease management technologies has been a journey from simplicity to complexity. Plant pathologists developing alternative technologies are slowly moving away from the "silver bullet" concept where a single intervention can be used to control a disease to viewing plant disease as a process where multiple interventions may be required at different points in the disease process. Over the past thirty years, alternatives have moved from the simple idea of applying high concentrations of biocontrol agents to a harvested commodity, to using a wide array of other alternatives, and integrating them together into a systems approach based on the multiple decrement or multiple hurdle concept. The ease of sequencing genomes and obtaining related genotypic, transcriptomic, proteomic, and metabolomic information is leading to the development of new commercial technologies where problems are solved "biologically."

Published by Elsevier B.V.

1. Introduction

And so, from hour to hour we ripe and ripe, And then from hour to hour we rot and rot, And thereby hangs a tale. William Shakespeare (As You Like It, Act II, Scene vii)

Finding safe and effective alternatives to synthetic, chemical fungicides for reducing postharvest losses of harvested commodities has been the focus of much research over the past three decades (Table 1). Finding alternatives that are widely accepted and commercially viable has, however, been a challenge. Nevertheless, there is a real imperative to continue this line of research,

* Corresponding author.

since regulations on the use of new and existing fungicides are becoming more and more stringent. For example, depending on the commodity, the postharvest use of fungicides is completely prohibited in some European countries or limited to just a few registered chemicals. Even if their use is allowed to some limited degree, many large supermarket chains and wholesale fruit suppliers are setting their own standards for chemical residues and the number of active ingredients allowed to be present on harvested commodities. As detailed by Sanzani et al. (2016), safety concerns about mycotoxins and foodborne pathogens also increase the need to find viable alternatives. Additionally, potential restrictions on the use of some fungicides used before harvest could also result in increased levels of inoculum of postharvest pathogens and the number of latent infections that are established.

The search to identify alternative approaches to postharvest disease management must be viewed in relation to a complex regulatory environment, the need to address disease problems in a wide array of commodities and conditions, industry and consumer

E-mail addresses: michael.wisniewski@ars.usda.gov (M. Wisniewski), samird@volcani.agri.gov.il (S. Droby), jay.norelli@ars.usda.gov (J. Norelli), liujja@hfut.edu.cn (J. Liu), lschena@unirc.it (L. Schena).

Table 1

Alternative management technologies for postharvest disease control.^a

Treatment	Fruit host	Target pathogen	Reference
Biological Control Yeast antagonist			
Candida oleophila	Apple	Penicillium expansum,	Mercier and Wilson (1995),
		Botrytis cinerea	Liu et al. (2012b)
Candida sake	Apple,	P. expansum, B. cinerea	Morales et al. (2008),
Matashailannis fanatisals	Grape	Devicilling distant	Cañamás et al. (2011)
Metschnikowia fructicola	Grapefruit, Apple	Penicillium digitatum, P. expansum	Hershkovitz et al. (2013), Liu et al. (2011)
Cryptococcus albidus	Apple	P. expansum, B. cinerea	Fan and Tian (2001)
Cryptococcus laurentii	Strawberry	B. cinerea	Wei et al. (2014)
Pichia anomala	Banana	Colletotrichum musae, Fusarium moniliforme	Lassois et al. (2008)
Pichia guilliermondii	Apple, Kiwifruit	B. cinerea	Wisniewski et al. (1991), Sui and Liu (2014)
Aureobasidium pullulans (yeast-like	Peach, Apple,	Monilinia laxa, P. expansum,	Zhang et al. (2010), Mari et al. (2012)
fungus)	Plum	B. cinerea, Colletotrichum acutatum	
Bacterial antagonist			
Pantoea agglomerans	Apple	P. expansum	Morales et al. (2008)
Bacillus subtilis	Tomato	Rhizopus stolonifer	Ma et al. (2015)
Pseudomonas syringae	Banana	Fusarium pallidoroseum, F. proliferatum	Williamson et al. (2008)
Bacillus amyloliquefaciens	Citrus	Penicillium italicum, P. digitatum	Hao et al. (2011)
Physical Treatments Heat			
Hot water dipping	Peach Apple	Monilia fructicola, M. laxa, P. expansum	Liu et al. (2012a), Spadoni et al. (2014, 2015)
Hot water rinsing	Apple	Neofabraea alba	Maxin et al. (2012)
Hot water brushing	Grapefruit	P. digitatum	Pavoncello et al. (2001)
Hot air treatment	Sweet cherry	P. expansum	Wang et al. (2015)
Vapor heat treatment	Table grape	B. cinerea	Lydakis and Aked (2003)
UV-C	Tomato	Rhizopus stolonifer, B. cinerea	Stevens et al. (2004),
			Charles et al. (2009)
	Papaya Melon	Colletotrichum gloeosporioides Fusarium oxysporum, Alternaria alternata	Cia et al. (2007) Huang et al. (2015)
Modified Atmosphere			
·	Sweet cherry	M. fructicola	Spotts et al. (2002)
	Peach	P. expansum, B. cinerea	Karabulut and Baykal (2004)
	Apple	P. expansum	Conway et al. (2007), Janisiewicz et al. (2008a,b)
Ozone Treatment			
ozone meannent	Table grape	B. cinerea	Milkota Gabler et al. (2010a,b)
	Longan Tangerine	Naturally occurring decay P. digitatum	Whangchai et al. (2006), Whangchai et al. (2010), Boonkorn et al. (2012
Natural Compounds			
Chitosan	Townsto	D ann an an D aireana	Lin et al. (2007)
	Tomato Table grape	P. expansum, B. cinerea B. cinerea	Liu et al. (2007) Romanazzi et al. (2007)
	Strawberry	B. cinerea	Feliziani et al. (2015)
Oligochitosan	Strawberry	b. emercu	
0	Jujube	M. fructicola, A. alternata	Yan et al. (2012)
	Apple	M. fructicola	Yang et al. (2010)
	Orange	C. gloeosporioides	Deng et al. (2015)
Salts Potassium sorbate	Lamon	P digitatum P italiaum	Cerioni et al. (2013)
Sodium bicarbonate (SBC)	Lemon	P. digitatum, P. italicum, Lasiodiplodia theobromae,	Cerioni et al. (2013)
potassium phosphite		Geotrichum citri-aurantii	
Sodium carbonate (SC) Potassium bicarbonate	Citrus	Naturally occurring decay	Youssef et al. (2012)
Potassium carbonate Potassium sorbate Calcium chloride			
Calcium chelate Potassium sorbate	Citrus	P. digitatum, P. italicum	Montesinos-Herrero and Palou (2016)
Sodium ethylparaben	Citrus	P. digitatum, P. italicum	Moscoso-Ramírez et al. (2013)
SC/SBC	Citrus	P. digitatum	Usall et al. (2008)
Calcium chloride	Apple	Monilinia fructigena	Holb et al. (2012)
	nppic	inomina ji actigona	1101D et ul. (2012)

Download English Version:

https://daneshyari.com/en/article/4517707

Download Persian Version:

https://daneshyari.com/article/4517707

Daneshyari.com