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Keywords: In a seminal 1978 paper Kleinrock (1979), Professor Leonard Kleinrock (“Kleinrock™)
Networks derived “rules of thumb” for flow-control, using a “power” metric of delay-throughput
Eﬁ)vjverwmrol tradeoffs. This work stimulated a stream of, still on-going (e.g., Canzian et al., 2013),

flow-control researches. A particularly challenging question, still widely open, has been:
Pareto-optimal how can networks optimize a global performance index, such as power and through decen-
Decentralized control tralized actions?
Clouds At the same time, my Ph.D. thesis, under Len’s guidance, introduced microeconomic
techniques for decentralized control of channel access schemes (Yemini and Kleinrock,
1979). This research too, continues to attract current interest (e.g., Chang et al., 2013).

This paper introduces a generalized “power” metric for decentralized resource allocation,
and uses it to derive novel Balance-of-Power principles, for Pareto optimal allocations.
These principles substantially generalize and unify the results of Kleinrock (1979) and
Yemini and Kleinrock (1979), as well as successor works, while shedding new light on
resource sharing mechanisms in current virtual and cloud systems.
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Microeconomics

1. Introduction This paper considers decentralized agents, competing

over network resource allocations, to serve their individual

In a seminal paper [1] Kleinrock introduced the use of
“power” metric to derive deterministic rules-of-thumb,
for network flow control.

It is useful to consider the rationale for this work:
“Queuing theory is hard. Most interesting queuing models
cannot be solved exactly and this leaves the systems analyst
in a difficult position, especially at the design phase.. It is
the purpose of this paper to provide some engineering rules
of thumb ... that use deterministic reasoning which is quite
accurate and which leads to deterministic conclusions that
systems can be driven close to 100% of their capacity and still
perform well.”

In the past 36 years that passed since the publication of
[1], queuing theory has not become simpler, but net-
worked systems have become more complex and difficult
to design, analyze and control.
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workloads demands. We follow the rationale above, to
derive new deterministic rules-of-thumb, for decentralized
Pareto-optimal allocations. We first generalize “power”, to
serve as an agent’s utility metric of its resource allocations.
We then derive a new Balance-of-Power rule-of-thumb, to
optimize the tradeoffs between selfish gains of an agent,
through increasing its resource utilization, and the inter-
ference-losses, such increased utilization inflicts on other
workloads.

A Pareto optimal resource allocation, balances
the “lost opportunity costs”, when an agent
forgoes selfish increase of its resource
demand, against gains of others, from reduced
“interference loss”.

A balance of power principle
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This principle, summarized above, is proved in Section 5,
where both “lost opportunity costs” and “interference
loss” are formally quantified.

2. Background

This section briefly introduces the “power” metric. The
“power” of a service system, denoted U, [1-4,7] is defined
as:

U(x) = 2/T(2) (1)

where 2 is the average workload arrival rate (throughput)
and T(1) is the average time it spends in the system (delay).
Power is maximized when

T2 =T(07) )

This occurs at the “knee” in the delay-throughput curve
T(4), where the ray from the origin T(1)// is tangent to T(1).
For an M/M/1 service U(1)=2T(2)=Mu—4)=
12p(1 — p), where u is the service rate and p = J/u is the
service utilization. Assume that time is normalized to mea-
sure in service-time units so that = 1, then power is:

Ulp) = p(1-p) 3)

The term p represents utilization of the service capacity,
while (1 — p) represents the residual capacity kept available
(unused on average) to absorb random workload fluctua-
tions. Power may be thus interpreted as a metric of trade-
offs, between maximizing service utilization, while
minimizing the risks of temporal congestion, due to statis-
tical workload fluctuation.
We note several features of power maximization:

I. Power is optimized when p* =1 — p* = 0.5; both, uti-
lization and residual capacity use 50% of the service
capacity.

I. At peak-power, the average number of customers in
the system is: N*= I*T(/*) = p*/(1 — p*)=1.

IIl. Furthermore, this average customer in the system
spends, on average, T(p*)=1/(1 — p*)=2 service-
time units in the system; one in service and one
waiting for the service to clear.

Power maximization thus results in efficient use of the
service through deterministic rules: The system allocates
50% of its capacity to handle the deterministic workload
average, and leaves 50% residual capacity to absorb its ran-
dom fluctuations. The system is occupied by a single cus-
tomer at a time, and keeps it in the queue just enough
time to clear the service.

Such intuitively appealing deterministic rules-of-thumb
can provide invaluable guidelines to engineer network
mechanisms. It is not an accident that TCP congestion con-
trol mechanisms seek to discover the residual capacity
(sstresh) of bottleneck nodes, through the slow-start phase;
set the congestion-window to utilize 50% of this capacity;
and follow with congestion-avoidance phase, to adapt to
changes in the bottleneck residual capacity.

Subsequent work (e.g., [3,9-11,2,17]) expanded and
applied these results broadly. However, optimizing power

for an entire network, involving multiple interfering flows,
turned out to be an elusive challenge (e.g., [9]). A global
power metric may not admit decentralized optimization
by local nodes. Nodes may be unable to monitor and con-
trol interference between flows at remote nodes, based
on local information and actions.

These limitations of optimizing global power metrics
suggest using decentralized optimization techniques. Such
techniques, developed by microeconomics [25], consider
resource-sharing agents, competing to maximize their
individual utilities. In the context of network flows, flows
compete over shared link allocations; the power of a flow
defines its utility. Power maximization becomes a multi-
objective optimization problem, resolved by Pareto-opti-
mization techniques described below.

Pareto optimization was first applied to network
resource sharing in [5,8], then expanded to a broad variety
of network resource allocations [13-16,18-20,23]. Starting
in the mid 1990s the economics of network has attracted
significant interest and applied in thousands of researches,
and even several products (e.g., [26]).

3. Pareto optimal resource allocation

Consider a resource allocated among n agents, with the
k-th agent getting a fraction 0 < X, <1 of the resource
capacity. A vector allocation X=(Xj,Xs,...,X,) creates
utility value to the k-th agent: 0 < U(X). Agents compete
over resource allocations, to optimize their utilities.

The utility mapping U(X) transforms resource alloca-
tions in utilization space X=[0,1]" to utilities space
U=[0,00)". A utility vector U dominates Y, denoted Y< U,
if Yi < Uy for every agent k, with at least one strict inequal-
ity. A utility vector that is not dominated by any other util-
ity vector is called Pareto optimal (or, “efficient”). An
allocation X, yielding a Pareto optimal utility U(X), is called
Pareto optimal allocation.

Loosely speaking, a Pareto optimal allocation is one
where no agents can improve their utilities, without hav-
ing some other agents see their utilities decrease. Under
broad assumptions on the regularity and smoothness of
the mapping U(X), the set of Pareto optimal allocations
forms a surface within the allocations space X, called the
Pareto frontier (see [24,25]). Pareto optimization is con-
cerned with characterizing and computing Pareto optimal
allocations and the Pareto frontier.

We proceed to apply Pareto-optimization techniques to
decentralized power optimization.

Example 1 (Two link sharing flows). Consider, two M/M/1
flows, sharing a network link. Let X} denote the fraction of
the link capacity utilized by flow-k (k =1, 2). It is conve-
nient to use alternate term to describe X,: “allocation”,
“resource share”, or “workload” of flow-k. An allocation
X=(X,X2) yields a power utility for each flow:
Uk =Xk(1 — X] — Xz)

What are the Pareto optimal allocations of U(X)?

Suppose, first, that the two flows agree to share the link
equally: X7 = X5 = x. This yields the power utility functions
Ui(x) = x(1 — 2x), optimized at x = 1/4. This fair allocation
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