
Recursive design of hardware priority queues q

Y. Afek a,⇑,1, A. Bremler-Barr b,2, L. Schiff a,1,2

a Tel Aviv University, Tel Aviv, Israel
b The Interdisciplinary Center, Hertzelia, Israel

a r t i c l e i n f o

Keywords:
Sorting
TCAM
Priority Queue
WFQ

a b s t r a c t

A recursive and fast construction of an n-element priority queue from exponentially smal-
ler hardware priority queues and size n RAM is presented. All priority queue implementa-
tions to date require either Oðlog nÞ instructions per operation or, exponential (with key
size) space or, expensive special hardware whose cost and latency dramatically increases
with the priority queue size. Hence constructing a priority queue (PQ) from considerably
smaller hardware priority queues (which are also much faster) while maintaining the
Oð1Þ steps per PQ operation is critical. Here we present such an acceleration technique
called the Power Priority Queue (PPQ) technique. Specifically, an n-element PPQ is con-
structed from 2k� 1 primitive priority queues of size

ffiffiffi
nk
p
ðk ¼ 2;3; . . .Þ and a RAM of size

n, where the throughput of the construct beats that of a single, size n primitive hardware
priority queue. For example an n-element PQ can be constructed from either three

ffiffiffi
n
p

or
five

ffiffiffi
n3
p

primitive H/W priority queues.
Applying our technique to a TCAM based priority queue, results in TCAM-PPQ, a scalable

perfect line rate fair queuing of millions of concurrent connections at speeds of 100 Gbps.
This demonstrates the benefits of our scheme; when used with hardware TCAM. We expect
similar results with systolic arrays, shift-registers and similar technologies.

As a byproduct of our technique we present an OðnÞ time sorting algorithm in a system
equipped with a O w

ffiffiffi
n
p� �

entries TCAM, where here n is the number of items, and w is the
maximum number of bits required to represent an item, improving on a previous result that
used an XðnÞ entries TCAM. Finally, we provide a lower bound on the time complexity of sort-
ing n-element with TCAM of size OðnÞ that matches our TCAM based sorting algorithm.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

A priority queue (PQ) is a data structure in which each
element has a priority and a dequeue operation removes

and returns the highest priority element in the queue.
PQs are the most basic component for scheduling, mostly
used in routers, event driven simulators and is also useful
in shortest path and navigation (e.g. Dijkstra’s algorithm)
and compression (Huffman coding). In time based schedul-
ing systems, time values, such as customer arrival time or,
expected end of service time, are transformed into priori-
ties that are then used in the PQ [2,3].

As noted first by Kleinrock, packet scheduling schemes
are at the foundations of the successful construction of
computer networks [4,2,5]. In today’s routers and switches,
PQs play a critical role in scheduling and deciding the
transmission order of packets [6–8]. Priority Queues are

http://dx.doi.org/10.1016/j.comnet.2014.03.010
1389-1286/� 2014 Elsevier B.V. All rights reserved.

q A preliminary version of this paper appeared in the proceedings of the
25th ACM Symposium on Parallelism in Algorithms and Architectures,
(SPAA 2013) [1].
⇑ Corresponding author.

E-mail addresses: afek@post.tau.ac.il (Y. Afek), bremler@idc.ac.il
(A. Bremler-Barr), schiffli@post.tau.ac.il (L. Schiff).

1 Supported by the Israel Science Foundation Grant no. 1386/11.
2 Supported by European Research Council (ERC) Starting Grant No.

259085.

Computer Networks 66 (2014) 52–67

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier .com/locate /comnet

http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2014.03.010&domain=pdf
http://dx.doi.org/10.1016/j.comnet.2014.03.010
mailto:afek@post.tau.ac.il
mailto:bremler@idc.ac.il
mailto:schiffli@post.tau.ac.il
http://dx.doi.org/10.1016/j.comnet.2014.03.010
http://www.sciencedirect.com/science/journal/13891286
http://www.elsevier.com/locate/comnet


used to enforce fairness while also considering the
different priorities of flows, thus guaranteeing that flows
get a weighted (by their relative importance and history
of usage) fair share of the bandwidth independent of the
size of packets used.

Since PQs share the same time bounds as sorting algo-
rithms [9], in high throughput scenarios, (e.g., backbone
routers) special hardware PQs are used. Hardware PQs
are usually implemented by ASIC chips that are specially
tailored and optimized to the scenario and do not scale
well [10–15].

We present a new construction for large hardware PQs,
called Power Priority Queue (PPQ), which recursively uses
small hardware priority queues in parallel as building
blocks to construct a much larger one. The size of the
resulting PQ is a power of the smaller PQs size, specifically
we show that an n elements priority queue can be con-
structed from only 2k� 1 copies of any base (hardware)ffiffiffi

nk
p

elements (size) priority queue. Our construction bene-
fits from the optimized performance of small hardware
PQs and extends these benefits to high performance, large
size PQ.

We demonstrate the applicability of our construction in
the case of the Ternary Content Addressable Memory
(TCAM) based PQ, that was implied by Panigrahy and Shar-
ma [16]. The TCAM based PQ, as we investigate and opti-
mize in E, has poor scalability and becomes impractical
when it is required to hold 1 M items. But by applying
our construction with relatively tiny TCAM based PQ, we
achieve a PQ of size 1 M with throughput of more than
100 M operations per second, which can be used to sche-
dule packets at a line rate of 100 Gbps. The construction
uses in parallel 10 TCAMs (or TCAM blocks) of size
110 Kb and each PQ operation requires 3.5 sequential
TCAM accesses (3 for Dequeue and 4 for Insert).

Finally this work also improves the space and time per-
formance of the TCAM based sorting scheme presented in
[16]. As we show in Section 4 an n elements sorting algo-
rithm is constructed from two w

ffiffiffi
n
p

entries TCAM’s, where
w is the number of bits required to represent one element
(in [16] two n entries TCAM’s are used). The time complex-
ity to sort n elements in our solution is the same as in [16],
OðnÞ, when counting TCAM accesses, however our algo-
rithm accesses much smaller TCAM’s and thus is expected
to be faster. Moreover, in Section 4.2 we prove a lower
bound on the time complexity of sorting n elements with
a TCAM of size n (or

ffiffiffi
n
p

) that matches our TCAM based
sorting algorithm.

2. Priority queues background

2.1. Priority queues and routing

Since the beginning of computer networks, designing
packet scheduling schemes has been one of the main diffi-
culties [5,2]. In today’s routers and switches, PQs play a
critical role in scheduling and deciding the order by which
packets are forwarded [6–8].

Priority Queues is the main tool with which the sched-
ulers implement and enforce fairness combined with prior-
ity among the different flows.

Guaranteeing that flows get a weighted (by their rela-
tive importance) fair share of the bandwidth independent
of packet sizes they use.

For example, in the popular Weighted Fair Queueing
(WFQ) scheduler, each flow is given a different queue,
ensuring that one flow does not overrun another. Then, dif-
ferent weights are associated with the different flows indi-
cating their levels of quality of service and bandwidth
allocation. These weights are then used by the WFQ sched-
uler to assign a time-stamp to each arriving packet indicat-
ing its virtual finish time according to emulated
Generalized Processor Sharing (GPS). And now comes the
critical and challenging task of the priority queue, to trans-
mit the packets in the order of the lowest timestamp pack-
et first, i.e., according to their assigned timestamps.3 For
example, in a 100 Gbps line rate, hundreds of thousands of
concurrent flows are expected.4 Thus the priority queue is
required to concurrently hold more than million items and
to support more than 100 million insert or dequeue opera-
tions per second. Note that the range of the timestamps de-
pends on the router’s buffer size and the accuracy of the
scheduling system. For best accuracy, the timestamps
should at least represent any offset in the router’s buffer.
Buffer size is usually set proportional to RTT � lineRate, and
for a 100 Gbps line rate and RTT of 250 ms, timestamp size
can get as high as 35 bits.

No satisfactory software PQ implementation exists due
to the inherent Oðlog nÞ step complexity per operation in
linear space solutions, or alternatively OðwÞ complexity
but then with Oð2wÞ space requirement, where n is the
number of keys (packets) in the queue and w is the size
of the keys (i.e., timestamps in the example above). These
implementations are mostly based on binary heaps or
Van De Boas Trees [12]. None of these solutions is scalable,
nor can it handle large priority queues with reasonable
performances.

Networking equipment designers have therefore turned
to two alternatives in the construction of efficient high rate
and high volume PQ’s, either to implement approximate
solutions, or to build complex hardware priority queues.
The approximation approach has light implementation
and does not require a PQ [18]. However the inaccuracy
of the scheduler hampers its fairness, and is thus not appli-
cable in many scenarios. The hardware approaches, de-
scribed in detail in the next subsection, are on the other
hand not scalable.

2.2. Hardware priority queue implementations

Here we briefly review three hardware PQ implementa-
tions, Pipelined heaps [13,19], Systolic Arrays [10,11] and
Shift Registers [15]. ASIC implementations, based on pipe-
lined heaps, can reach Oð1Þ amortized time per operation
and Oð2wÞ space [13,19], using pipeline depth that depends
on w, the key size, or log n the number of elements. Due to
the strong dependence on hardware design and key size,
most of the ASIC implementations use small key size, and

3 Note that it’s enough to store the timestamp of the first packet per flow.
4 Estimated by extrapolating the results in [17] to the current common

rate.

Y. Afek et al. / Computer Networks 66 (2014) 52–67 53



Download English Version:

https://daneshyari.com/en/article/451774

Download Persian Version:

https://daneshyari.com/article/451774

Daneshyari.com

https://daneshyari.com/en/article/451774
https://daneshyari.com/article/451774
https://daneshyari.com

