ELSEVIER



Contents lists available at ScienceDirect

## Postharvest Biology and Technology

journal homepage: www.elsevier.com/locate/postharvbio

# Advances and current challenges in understanding postharvest abiotic stresses in perishables



### Romina Pedreschi<sup>a,\*</sup>, Susan Lurie<sup>b</sup>

<sup>a</sup> Pontificia Universidad Católica de Valparaíso, School of Agronomy, Chile
<sup>b</sup> Department of Postharvest Science of Fresh Produce, Volcani Center, Israel

#### ARTICLE INFO

Article history: Received 20 January 2015 Received in revised form 4 May 2015 Accepted 6 May 2015 Available online 19 May 2015

Keywords: Transcriptomics Proteomics Metabolomics Phenotype Storage Cold Heat Oxygen Water Joss

Contents

#### ABSTRACT

Postharvest abiotic stresses impact not only quality, eating and nutritional attributes of perishables but shelf life and susceptibility to physiological and pathological disorders and thus postharvest losses. Classical postharvest technologies involve applying stress conditions (cold, controlled atmosphere conditions, addition of chemicals) to extend storage and shelf-life. However, recent research has concerned itself with understanding the mechanisms by which abiotic stresses affect postharvest commodity quality. Thus, holistic approaches that incorporate the use of transcriptomic, proteomic, and metabolomic platforms, complemented with biochemical analysis as well as phenotyping are being used to understand stress physiology and its complex regulation at the different levels of cellular control (e.g., epigenetic control, post-transcriptional, post-translational) in order to develop and improve current technological processes. This review aims to highlight key methodological points that need to be addressed for further understanding of key postharvest abiotic stresses (cold/heat, low oxygen/high carbon dioxide and dehydration) and to review research over the last ten years dedicated to understanding postharvest abiotic stresses.

© 2015 Elsevier B.V. All rights reserved.

| Introc | luction                                                                           | . 77 |
|--------|-----------------------------------------------------------------------------------|------|
| Posth  | arvest stress physiology in perishables                                           | . 79 |
| 2.1.   | Harvest and postharvest phenotyping                                               | . 79 |
| 2.2.   | Factors influencing the response to postharvest abiotic stresses                  | . 79 |
| 2.3.   | Postharvest abiotic stress physiology of perishables                              | . 81 |
|        | 2.3.1. Temperature: cold and heat                                                 | . 81 |
|        | 2.3.2. Dehydration                                                                | . 82 |
|        | 2.3.3. Low oxygen and high carbon dioxide                                         | . 83 |
| 2.4.   | Epigenetic control in postharvest abiotic stresses                                | . 86 |
| 2.5.   | Perspectives: Postharvest Systems Biology approach to understand abiotic stresses | . 87 |
| Ackno  | wledgements                                                                       | . 88 |
| Refere | nres                                                                              | 88   |

#### 1. Introduction

Fruits and vegetables are still alive and respiring after being harvested. However, they are cut off from their nutrient and water

E-mail address: romina.pedreschi@ucv.cl (R. Pedreschi).

resources, and thus susceptible to fast deterioration if the right measures are not taken. Reduction of postharvest losses, which are significant and might represent up to 40% of the harvested crop, is one of the leading strategies to assure food safety (quantity and quality of food) given the constantly growing population (FAO, 2011). Different postharvest strategies (e.g., low temperature, air atmosphere modification, chemical treatments) are commercially used to reduce the respiratory rate, retard ripening and senescence, deter pathogen development and extend shelf life while

<sup>\*</sup> Corresponding author at: Romina Pedreschi. Calle San Francisco s/n, La Palma, Quillota, Chile. Tel.: +56 32 227 4515.

 $<sup>\</sup>label{eq:http://dx.doi.org/10.1016/j.postharvbio.2015.05.004 \\ 0925-5214/ © \ 2015 \ Elsevier \ B.V. \ All \ rights \ reserved.$ 

#### Table 1

Selected studies at different levels of cellular control related to cold and heat postharvest (PHT) treatments.

| Commodity                                                         | PHT Treatment                                                                                                                                       | Phenotyping                              | Platform(s)                                                                                     | Main findings                                                                                                                                                                                                                                                                                                                                                                                               | Reference                    |
|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| Citrus<br>Citrus paradisi<br>Macf cv. Marsh                       | $5^{\circ}C \times 3$ weeks (non-conditioned)<br>16°C × 7d + 5°C × 3 weeks<br>(conditioned)                                                         | CI index                                 | Targeted RT-PCR                                                                                 | Decreased lipid transfer protein, LEA, stress<br>response zinc finger protein, catalase and<br>metallothionein & induced galactinol synthase,<br>ACO, pathogen inducible oxygenase and<br>temperature induced lipocalin.                                                                                                                                                                                    | Maul et al.<br>(2011)        |
| Citrus sinensis cv.<br>Valencia                                   | HT (37°C×2 d and 90% RH+2 d<br>at 20°C). Storage simulation<br>(5°C+30 d & 5°C+60 d)                                                                | RR, SSC, TA<br>EtOH & Acet<br>EL, HP, WL | Gel-based DIGE<br>proteomics Metabolomics<br>GC-MS Targeted<br>ascorbate-glutathione<br>enzymes | HT induced pathogenesis related proteins, SOD in<br>flavedo but decreased in sacs; increased<br>peroxidase in flavedo only and increased alcohol<br>dehydrogenase in flavedo but not in sacs.                                                                                                                                                                                                               | Perotti et al.<br>(2011)     |
| Citrus<br>grandis × Citrus<br>paradise                            | 8–10°C, 85–90% RH up to 120 d                                                                                                                       | SS, OA, EtOH,<br>Acet, MeOH,<br>ABA, Asc | Digital gene expression<br>profiling and gel based<br>proteomics and qRT-PCR                    | ABA not involved in cold stress. Increased<br>chitinase, cysteine synthase, cysteine protease<br>inhibitor, allyl alcohol dehydrogenase,<br>mitochondrial aldehyde dehydrogenase.<br>Increased heat shock protein, COR15 and cold<br>responsive genes. Down regulation of genes<br>involved in carbon, nitrogen, lipid and secondary<br>metabolism. Increased limonin, nomilin, methanol &<br>acetaldehyde. | Yun et al.<br>(2012)         |
| Citrus unshiu cv.<br>Marc                                         | $52 \circ C \times 2 \min$                                                                                                                          | RR, WL, TSS                              | Gel-based proteomics and<br>GC-MS and LC-MS<br>metabolomics                                     | Increased glucanases, chitinases, low MW HSPs<br>and reduced redox metabolism (isoflavone<br>reductase, oxidoreductase and SOD) Decreased<br>primary metabolism (OA and aminoacids) but<br>increased BUEAs gluconic acid                                                                                                                                                                                    | Yun et al.<br>(2013)         |
| Murcott tangor<br>(tangerine x<br>sweet orange)                   | $4 ^{\circ}\text{C} \times 15 \text{d}$                                                                                                             | Water loss                               | Gel-based proteomics                                                                            | Increase in cysteine protenase, decrease in ascorbate peroxidase                                                                                                                                                                                                                                                                                                                                            | Lliso et al.<br>(2007)       |
| Grape<br>Vitis labruscana                                         | $2^\circ\text{C}\times50\text{d},95\%$ RH                                                                                                           | F, TSS, TA,<br>reducing<br>sugars        | Gel-based proteomics,<br>targeted organic and<br>phenolic acid analysis                         | Decreased glycolysis and TCA enzymes. Increased cell wall degrading, HSPs and antioxidant enzymes and proteasomes.                                                                                                                                                                                                                                                                                          | Yun et al.<br>(2014)         |
| Peach<br>Prunus persica L.<br>Batsch var<br>nectarinacv.<br>Venus | 0°C × 1 h + 5 w at 5°C 85–90%<br>RH + 20°C × 1 d                                                                                                    | F, CI index                              | Gel-based proteomics<br>Targeted RT-PCR                                                         | Increased stress related PR (Pru p 1.05, Pru du<br>1.06A., Pru p 2.01 A and Pru p 2.01) proteins.                                                                                                                                                                                                                                                                                                           | Giraldo et al.<br>(2012)     |
| Prunus persica L.<br>Batsch cv.<br>OHenry                         | $4 \circ C \times 21 d + 21 \circ C \times 5 d$ (WI)                                                                                                | F, TSS, RR, E,<br>JC                     | Microarray qRT-PCR                                                                              | Decreased SAM synthetase, 1-ACC, expansin and<br>endo-PG. Increased of stress defensive enzymes:<br>catalase, superoxide dismutase, glutathione<br>reductase.                                                                                                                                                                                                                                               | Pavez et al.<br>(2013)       |
| Prunus persica L.<br>Batsch cv.<br>Dixiland                       | $0 \circ C \times 5 d$ and 90% RH (cold)<br>39 ± 1 °C and 90% RH (heat)<br>39 ± 1 °C and 90% RH × 3 d + 5 d at<br>0 °C + 2 d at 20 °C (heat & cold) | F, SSC, TA                               | Metabolomic GC-MS<br>Targeted RT-PCR                                                            | Increased putrescine & benzoate due only to cold.<br>Increased saccharate, glucoheptose, malitol,<br>fructose, trehalose, maltose, serine only due to<br>heat. Increased galactinol & raffinose, 1-O<br>methylglucoside, Glc, Thr, Asp, Asn, Tyr, glycerate<br>and urea                                                                                                                                     | Lauxmann<br>et al. (2014)    |
| <i>Prunus persica</i> L.<br>Batsch cv<br>Dixiland                 | $39\pm1^{\circ}C$ and 90% RH $\times3d$                                                                                                             | F                                        | Transcriptomics qRT-PCR                                                                         | Increased TFs:ZAT12, WRKY40, IAA2, NF-YA4<br>involved in plant stress responses, auxins and<br>PR.                                                                                                                                                                                                                                                                                                          | Lauxmann<br>et al. (2012)    |
| Prunus persica L.<br>Batsch cv<br>Dixiland                        | $39\pm1^{\circ}C$ and 90% RH $\times3d$                                                                                                             | in situ IML<br>proteins                  | Gel-based DIGE<br>proteomics qRT-PCR                                                            | Reduced ACO1, 12 cell wall modifying enzymes<br>and DUF642 proteins and increased<br>glyceraldehyde 3-phosphate dehydrogenase<br>(apoplastic)                                                                                                                                                                                                                                                               | Bustamante<br>et al. (2012)  |
| Pepper<br><i>Capsicum</i><br>annuum L. var.<br>California         | 10 °C, 80% RH $\times$ 21 d                                                                                                                         | Cellular<br>ultrastructure               | Gel-based DIGE<br>proteomics                                                                    | Decreased glycolysis, Calvin and TCA cycle and catalase enzymes.                                                                                                                                                                                                                                                                                                                                            | Sánchez-Bel<br>et al. (2012) |
|                                                                   |                                                                                                                                                     | e, MDA, SS,<br>OA                        | Targeted ascorbate-<br>glutathione enzymes                                                      | Increased ethylene and MDA and changes in sugars and organic acids in chilled fruits.                                                                                                                                                                                                                                                                                                                       |                              |
| Tomato<br>Solanum<br>lycopersicum L.<br>cv. Micro-Tom             | $6 {}^\circ C {	imes}  48 h$                                                                                                                        | none                                     | Transcriptomics                                                                                 | Induction of a LEA (dehydrin type protein) Genes<br>involved in carotenoid, cell wall, ethylene and<br>signalling are involved in the uneven ripening                                                                                                                                                                                                                                                       | Weiss et al.<br>(2009)       |
| Line M82IL2-2                                                     | $3 ^{\circ}\text{C} \times 4$ weeks                                                                                                                 | E, F, color                              | Microarray based<br>transcriptomics, RT-PCR<br>and targeted HPLC<br>carotenoid analysis         | с опто та та                                                                                                                                                                                                                                                                                                                                                                                                | Rungkong<br>et al. (2011)    |
| Solanum<br>lycopersicum L.<br>cv. Micro-Tom                       | 20 °C × 7 min + 14 d at 2.5 °C                                                                                                                      | CI, EL, RR                               | Metabolomics GC-MS                                                                              | Low T: increased arabinose, citric acid,<br>dehydroascorbic acid, fructose 6-P, glucose 6-P,<br>rhamnose and valine and reduced glutamic and<br>shikimic acid. HT: increased alanine, allantoin,                                                                                                                                                                                                            | Luengwilai<br>et al. (2012)  |

Download English Version:

https://daneshyari.com/en/article/4517991

Download Persian Version:

https://daneshyari.com/article/4517991

Daneshyari.com