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a  b  s  t  r  a  c  t

Olive  fruit  fly  infestation  is  a significant  problem  for  the  milling  process.  In most  cases,  damage  from
insects  is ‘hidden’,  i.e. not  visually  detectable  on  the  fruit  surface.  Consequently,  traditional  visual  sor-
ting  techniques  are  generally  inadequate  for the  detection  and  removal  of  olives  with  insect  damage.  In
this study,  the  feasibility  of  using  NIR spectroscopy  to detect  hidden  insect  damage  is  demonstrated.
Using a  genetic  algorithm  for feature  selection  (from  2 to 6 wavelengths)  in combination  with  lin-
ear  discriminant  analysis  (LDA),  quadratic  discriminant  analysis  (QDA)  or k-nearest-neighbors  (kNN)
routines,  classification  error  rates  as  low  as 0.00%  false  negative,  12.50%  false  positive,  and  6.25%  total
error  were  achieved,  with  an  AUC  value  of  0.9766  and  a Wilk’s  � of  0.3686  (P  <  0.001).  Multiplicative
scatter correction,  Savitzky–Golay  spectral  pre-treatment  with  13  smoothing  points  and  mean  centering
spectral  pre-treatments  were  used.  The  optimal  features  corresponded  to Abs[1108  nm],  Abs[1232  nm],
Abs[1416  nm],  Abs[1486  nm]  and  Abs[2148  nm].

© 2014  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Olea europaea is one of the most important and widespread fruit
trees cultivated in the Mediterranean basin, where it has impor-
tant environmental, economical and social significance. A portion
of the olive production is processed for direct human consumption
but most is used for the production of oil, for which worldwide
consumption multiplied 6-fold over the last 30 years.

Among the various vegetable oils, virgin olive oil is unique for
many reasons, enclosing its chemical composition which differs
from that of other vegetable oils used by humans, containing unique
compounds that positively impact sensory, nutritional and health
properties. The highest quality olive oils, denominated extra-virgin,
contain a high concentration of these compounds. Extra-virgin olive
oil is a key component of the Mediterranean diet and is considered,
at least in part, to contribute to reduced incidence of cardiovascular
diseases observed in this region (Katan et al., 1995).

The chemical composition and subsequent quality of extra-
virgin olive oil depends entirely on the quality of the fruit from
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which it is derived. Thus, methods for improving fruit quality or
removing damaged or defective fruit have a direct impact on the
quality of oil produced.

Bactrocera oleae (olive fruit fly) is the most significant pest of
olives worldwide (Daane and Johnson, 2010) and one of the most
frequent causes of reduced olive oil quality. The detrimental effects
are related to both the severity of infestation and on the stage of the
fly development. Infestation occurs when the adult female pierces
the fruit and lays eggs just under the surface. The developing lar-
vae causes extensive damage by feeding, excavating deep tunnels
which can reach the stone (Rice, 2000). This facilitates the penetra-
tion and development of microorganisms, with accompanying loss
of fruit integrity and oil quality.

It has been demonstrated that infestation by B. oleae reduces
oil yield and alters the chemical composition of the olive fruit,
negatively affecting many olive oil qualitative parameters such as
free acidity, peroxide value and ultraviolet absorption (Gómez-
Caravaca et al., 2008). Moreover, the infested olives produce oil
with a reduced content of antioxidant phenolics (Gómez-Caravaca
et al., 2008; Gucci et al., 2012) and an altered volatile compound
profile (Angerosa et al., 2004) leading to severe and unacceptable
off-flavour. Consequently, the nutritional value and the sensory
properties of oil extracted from infested olives are compromised,

http://dx.doi.org/10.1016/j.postharvbio.2014.07.015
0925-5214/© 2014 Elsevier B.V. All rights reserved.

dx.doi.org/10.1016/j.postharvbio.2014.07.015
http://www.sciencedirect.com/science/journal/09255214
http://www.elsevier.com/locate/postharvbio
http://crossmark.crossref.org/dialog/?doi=10.1016/j.postharvbio.2014.07.015&domain=pdf
mailto:massanti@unitus.it
dx.doi.org/10.1016/j.postharvbio.2014.07.015


R. Moscetti et al. / Postharvest Biology and Technology 99 (2015) 58–62 59

and the product often does not conform to legal specification for
extra-virgin or virgin oils.

Currently, the loss of oil quality due to infested olives is unavoid-
able, since processing procedures authorized by the European
Union for virgin olive oil do not account for infestation. However,
since not all olives in an infested lot are infested, an excellent
product could be produced if good product could be separate from
defective product. This is the underlying motivation to utilize Near-
Infrared (NIR) spectroscopy for detection and removal of olives
infested by Bactrocera olea.

NIR spectroscopy has been proven effective for the detection of
insects or insect damage in food commodities and seeds such as
chestnut (Moscetti et al., 2014a, 2014b), blueberry (Peshlov et al.,
2009), cherry (Xing and Guyer, 2008; Xing et al., 2008), fig (Burks
et al., 2000), flour (Wilkin et al., 1986), green soybean (Sirisomboon
et al., 2009), jujube (Wang et al., 2010, 2011), mangoes (Haff et al.,
2013), seeds of the Larix species (Tigabu and Odén, 2004), seeds of
Picea abies (Tigabu et al., 2004), seeds of Cordia africana (Tigabu and
Odén, 2002) and others. Insects and larvae can be detected directly,
due to their hemolymph, lipids and/or chitin content (Rajendran,
2005), or indirectly due to subsequent damage such as internal
browning or darkening, dehydration or fungi contamination (Wang
et al., 2011). However, on-line inspection systems for infestation
of fresh produce, including olives, are still not in common use.
NIR techniques have the potential to benefit the food market by
reducing the risk of buying poor-quality products and consequently
allowing compliance with consumer demands for uniform high-
quality products (Butz et al., 2005).

The objective of the present study was to investigate the feasibil-
ity of using the NIR spectroscopy for detection of olives infested by
the olive fruit fly and identifying combinations of features (based on
absorbance of light in the NIR band from 1100 to 2300 nm)  having
optimal discriminatory ability and testing different classification
methods.

2. Materials and methods

2.1. Sample preparation

Approximately 1.2 kg of olives (Olea europaea L., cv. canino) were
manually harvested on a local farm in Central Italy at the end of
October, and were immediately taken to the laboratory in appropri-
ate thermal boxes. From these, 896 olives that were free from visual
external impact damage and/or decay were selected. The fruit were
kept at 25 ± 0.5 ◦C for 24 h to allow for temperature and moisture
equilibrium prior to NIR spectra acquisitions.

2.2. NIR spectral acquisition

Olive spectra were acquired using a Luminar 5030 acousto-
optic tunable filter-near infrared (AOTF-NIR) Miniature ‘Hand-held’
Analyzer (Brimrose Corp., Baltimore, USA). The instrument was
equipped with a reflectance post-dispersive optical configuration,
a pre-aligned dual beam lamp assembly and an indium gallium
arsenide (InGaAs) array (range 1100–2300 nm,  2-nm resolution)
with an integrating time of 60 ms.  Two spectra were acquired
on each of two opposite side of the fruit along the equatorial
line and averaged. Each acquired spectrum was the average of 10
scans. The reference spectrum was automatically measured by the
instrument as described by Cayuela and Weiland (2010). Diffuse
reflectance spectra were acquired and transformed into absorbance
(A = log R−1) using R 3.1.0 statistic software (CRAN, 2014). Immedi-
ately after the spectral acquisition, olives were dissected to visually
determine presence or absence of olive fruit fly larvae, thus assign-
ing each spectrum into infested (unsound) or not-infested (sound)
classes.

2.3. Statistical analysis of NIR spectra

Each olive was  modeled as a ‘data vector’, where the spectral
absorbance values (otherwise called features) were vector compo-
nents. Principle component analysis (PCA) was  applied to evaluate
between-class similarity. The original spectral data was converted
to score and loading vectors by PCA analysis. The scree-plot crite-
rion (Jolliffe, 2002) was  used to select the required number of PCs
for describing the dimensionality of the data.

Features for use in classification were extracted from the whole
spectra. Features were extracted following spectral pretreatments
including standard normal variate (SNV), multiplicative scatter
correction (MSC), and Savitzky–Golay first, second and third deriva-
tives (df,  d2f and d3f)  with second order polynomial (from 5 nm to
13 nm smoothing points with a step of 4 nm)  (Savitzky and Golay,
1964; Boysworth and Booksh, 2008). For each dataset, mean cen-
tering (MC) was also tested. Data preprocessing (transformation
and data reduction) can dramatically influence the final results of
recognition for spectral data, which may  contain highly correlated
variables, noise and irrelevant information caused directly by scat-
tering or adsorption of NIR light due to variable interaction of the
various types of compounds (Wu et al., 1996; Tallada et al., 2011).
Spectra pre-treatments can help remove the influence of peri-
carp thickness and skin condition, and enhance spectral differences
between classes. However, spectral information that can be useful
for the classification models could be lost in pretreatment process.
The aforementioned preprocessing techniques were tested and the
worst-fit pretreatments for classification purposes were discarded
by evaluating the robustness and the accuracy of each model.

A genetic algorithm (GA) was used to select features for input to
classification algorithms, with the obvious goal of selecting a series
of wavebands which could describe the correlation between the
predictor variables and the response variables (Xing et al., 2008).
The GA selects a small subset of spectral bands with biological
or biochemical importance, which are representative of the entire
spectra dataset. In this study, GA was used to seek n-feature subsets
(where n ranged from 2 to 6) which are optimal surrogates for the
whole dataset (Cerdeira et al., 2013). A maximum of six features
was chosen to minimize overfitting.

Sets of features selected by the GA were input into three dif-
ferent classification algorithms: linear discriminant analysis (LDA),
quadratic discriminant analysis (QDA) and k-nearest neighbors
(kNN). A cross validation procedure was performed for the selec-
tion of the optimal k nearest neighbors (where k ranged from 3 to
15). The smallest k among those having the lowest average error
was selected (Massart et al., 1988). LDA is a classification proce-
dure based on Bayes’ formula. This method renders a number of
orthogonal linear discriminant functions equal to the number of
categories minus 1. Thus for the case of two classes a single dis-
criminant function is generated, allowing easier interpretation of
the results. QDA is closely related to LDA and is often used when
class-covariance matrices are not assumed to be identical. In case
of large sample size and large differences between class-covariance
matrices, QDA might outperform LDA. kNN is an alternative method
much simpler that LDA and QDA in which classification is per-
formed by computing the sample distance from each of the samples
in the training set, finding the k nearest ones and classifying the
unknown to the class that has most members among these neigh-
bors (Naes et al., 2004).

Following the random subset selection method, the sample was
split as follows: 50% of the samples were assigned to a training set
(224 sound and 224 unsound fruits), 25% to a validation set (112
sound and 112 unsound fruits) and 25% to a test set (112 sound
and 112 unsound fruits). The random subset selection circumvents
overfitting problems and avoids overly optimistic results. No outlier
selection was computed.
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