
Data uploading time estimation for CUBIC TCP in long distance networks

Nobuyoshi Tomita a, Shahrokh Valaee b,⇑
a Sony Corporation, Japan
b The Department of Electrical and Computer Engineering, University of Toronto, Canada

a r t i c l e i n f o

Article history:
Received 20 September 2010
Received in revised form 11 April 2012
Accepted 18 April 2012
Available online 28 April 2012

Keywords:
TCP CUBIC
Bandwidth estimation

a b s t r a c t

CUBIC is a TCP-friendly algorithm that uses a cubic curve, independent of the round-trip
time, to rapidly recover from a packet loss. New releases of Linux use CUBIC for the TCP
protocol. In this paper, we show that if the socket buffer size of a sender TCP is small com-
pared with the bandwidth-delay product, Linux TCP window size drops to almost zero
every time a packet loss occurs. Using this fact, we estimate data uploading time in long
distance networks with packet loss. Also we discuss the improvement of the uploading
time by increasing cumulative socket buffer size in two ways: large buffer size or parallel
connections.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

New models of digital still cameras and digital cam-
corders are equipped with Wi-Fi and B3G/4G capability
that allows them to upload photos and movies directly
onto servers or databases. Users of these products, for in-
stance, may want to upload movies and photos captured
by their digital camcorders from overseas hotel rooms to
video sharing websites. In this case, data transfer in long
distance networks with large delay is usually required.
Furthermore, some networks may have comparatively
large delay even for domestic transfers in heavy traffic
condition. This paper investigates the following question:
Under the given round-trip delay and loss conditions, how
long does it take to upload a certain volume of data stored
in a camera with the new Linux kernel?

File transfer protocols use the reliable service of TCP
(Transmission Control Protocol) to transfer data among
hosts. The presence of TCP at the transport layer may re-
duce the effective bandwidth even if the underlying net-
work has enough capacity. This is due to the fact that the
throughput of TCP is related to the round-trip time (RTT)

of the network. That is, a sender TCP is allowed to transmit
new packets only after it has received acknowledgements
(ACKs) for previously transmitted packets.

To improve the TCP throughput, the application layer
can increase the ‘‘cumulative’’ socket buffer size of the sen-
der TCP by increasing the TCP socket buffer size, or increas-
ing the number of TCP connections. This approach uses the
conventional TCP, such as TCP Reno/New Reno, and only
adjusts its parameters, or uses multiple instances of TCP
to give an aggregated service to the application. The two
approaches have different effects on the throughput in
lossy networks. That is, a packet loss can reduce the
throughput more severely if the socket buffer size is large
and might have a moderate or small impact if multiple TCP
connections with small socket buffer size are used. It is
generally understood that multiple TCP connections main-
tain a higher throughput in reaction to a packet loss since
the loss only reduces the throughput of a single TCP con-
nection sparing the rest of the TCP connections to operate
at their favorable rate [1].

There has been a host of proposals on enhancing
throughput using multiple parallel TCP connections. An en-
hanced FTP protocol, called GridFTP, has been proposed in
[2] to reduce the file downloading time in grid environ-
ment. In [1], the concept of parallel TCP is explored and a
performance model is suggested to study the improvement

1389-1286/$ - see front matter � 2012 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.comnet.2012.04.010

⇑ Corresponding author.
E-mail addresses: Nobuyoshi.Tomita@jp.sony.com (N. Tomita),

valaee@comm.utoronto.ca (S. Valaee).

Computer Networks 56 (2012) 2677–2689

Contents lists available at SciVerse ScienceDirect

Computer Networks

journal homepage: www.elsevier .com/ locate/comnet

http://dx.doi.org/10.1016/j.comnet.2012.04.010
mailto:Nobuyoshi.Tomita@jp.sony.com
mailto:valaee@comm.utoronto.ca
http://dx.doi.org/10.1016/j.comnet.2012.04.010
http://www.sciencedirect.com/science/journal/13891286
http://www.elsevier.com/locate/comnet


achieved by the application of multiple parallel TCP
connections. The MultiTCP system [3] is a receiver-driven
multimedia streaming system that uses multiple TCP con-
nections. Multihomed hosts can also benefit from running
multiple parallel TCPs on different networks; Hsieh and
Sivakumar [4] proposes an end-to-end transport protocol
pTCP, which allows connections to enjoy the aggregate
bandwidth obtained through the multiple paths. All these
works use TCP Reno/NewReno and adjust the parameters
of the protocol to achieve enhanced throughput.

The second approach to throughput enhancement is to
replace the conventional TCP with a new transport algo-
rithm with appropriate congestion control mechanism. A
new breed of protocols, such as HSTCP [5], Scalable TCP
[6], H-TCP [7], XCP [8], TCP Vegas [9] and TCP Veno [10],
has been proposed in the literature to produce transport
layers with enhanced throughput. Since these protocols
can co-exist with the conventional TCP protocol in a net-
work, a major question is how ‘‘friendly’’ these protocols
are to the TCP protocol. BIC [11] and CUBIC [12] are two
new TCP-friendly protocols that can realize high through-
put even in networks with large RTT and are used as default
protocols in the new versions of Linux in particular after Li-
nux 2.6.8 and Linux 2.6.19, respectively. Detailed Linux TCP
implementation is explained in [13]. Also [14] surveys var-
ious congestion control methods used in Linux implemen-
tations, and shows their strengths and weaknesses.

In this paper, we study the congestion control mecha-
nism of CUBIC TCP, which is used in the latest versions of
Linux. We closely examine the code of Linux 2.6.27 to
understand the congestion control algorithm of this
operation system. In particular, we find a lower bound for
the total data uploading time for given file size, RTT, and
probability of packet loss.

There are some works in the literature that relate to our
research. An initial experimental evaluation of CUBIC TCP
algorithm is presented in [15], which highlights a number
of practical issues. Miras et al. [16] presents experimental
results and compares New Reno, HSTCP, H-TCP and CUBIC
with different views of fairness such as TCP-friendliness,
RTT-fairness, intra- and inter-protocol fairness. In [17], ac-
tive measurement results of New Reno, Vegas, Veno and
CUBIC in a commercial IEEE 802.16/WiMAX-based net-
work reveal several issues such as limited bandwidth for
TCP, high RTT and jitter, and unfairness during bidirec-
tional transfers.

This paper is organized as follows. In the next section
Linux TCP behavior is explained in detail. We estimate
the uploading time in Section 3. In Section 4, we add an
adjustment for the estimates with the actual Linux TCP
implementation. Experimental results in Section 5 show
the validity of the estimates and we conclude the paper
in Section 6.

2. Behavior of Linux TCP

Although the main purpose of this paper is to estimate
data uploading time in long distance networks with packet
loss, in this section, we study the behavior of the CUBIC
algorithm in Linux TCP. We will show in this paper that

TCP and its congestion control has a direct impact on the
uploading time. One of the important findings of this paper
is that increasing the socket buffer size does not necessar-
ily lead to a shorter uploading period. This finding is
against the conventional wisdom that the rate of TCP is
controlled by the congestion window, and that increasing
the socket buffer size results in a smaller data uploading
time. We need to review the details of the TCP congestion
control to realize how the total uploading rate is affected
by the socket buffer size and the round trip time (RTT).

There are two important buffers in the networking
stack: one is the ‘‘socket buffer,’’ which is used to store data
in the kernel, the other is the ‘‘application buffer,’’ which is
used in the application layer. When the application calls
the send () function with a pointer to the application buf-
fer, the sender TCP copies data from the application buffer
to its socket buffer and then uses a congestion control algo-
rithm to transmit the data. We assume that the socket buf-
fer size of the sender TCP is smaller than that of the
receiver TCP. This is a reasonable assumption because the
default value of the socket buffer size for the sender TCP
in Linux 2.6.27 is 16 Kbytes (16,384 bytes), whereas it is
85 Kbytes (87,380 bytes) for the receiver TCP.

Fig. 1a shows the typical throughput curve for CUBIC
TCP with a single packet loss. The vertical axis shows the
‘‘congestion window’’ size, which is the number of packets
allowed to be transmitted without any acknowledgement.
The maximum size of the congestion window depends on
the socket buffer size of the sender TCP. If the buffer size

(a)

(b)

Fig. 1. Throughput curve for CUBIC TCP with a packet loss when the
congestion window size is (a) less than W and (b) equal to W.

2678 N. Tomita, S. Valaee / Computer Networks 56 (2012) 2677–2689



Download	English	Version:

https://daneshyari.com/en/article/452022

Download	Persian	Version:

https://daneshyari.com/article/452022

Daneshyari.com

https://daneshyari.com/en/article/452022
https://daneshyari.com/article/452022
https://daneshyari.com/

