Computer Networks 56 (2012) 3087-3098

Contents lists available at SciVerse ScienceDirect

2 |

Mputer
Computer Networks L".-Jf'}ks

journal homepage: www.elsevier.com/locate/comnet

A spike-detecting AQM to deal with elephants

Dinil Mon Divakaran

AR AQAd

Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576, Singapore

ARTICLE INFO

ABSTRACT

Article history:

Received 14 October 2011

Received in revised form 22 March 2012
Accepted 17 April 2012

Available online 11 May 2012

Keywords:
AQM

QoS
Elephants
Flows
Markov

The current TCP/IP architecture is known to be biased against flows of small sizes—small
flows (or mice)—in the network, thereby affecting the completion times of small flows. A
common approach taken to solve this problem is to prioritize small flows over large flows
(elephants) during the packet-scheduling phase in the router. Past studies have shown that
such ‘size-based’ priority schedulers improve the completion times of small flows with
negligible affects on the completion times of large flows. On the flip side, most approaches
are not scalable with increasing traffic, as they need to trace flows and estimate ongoing
sizes of active flows in the router.

In this context, this work attempts to improve the performance of small flows using an
active queue management (AQM) system, without needing to track sizes of flows. The core
idea is to exploit a TCP property in detecting large ‘spikes’ and hence large flows, from
which packets are dropped, and importantly, only at times of congestion. In this way, we
use only a single queue, diverting from the multi-queueing systems used in size-based
schedulers. We propose two spike-detecting AQM policies: (i) SDS-AQM that drops packets
deterministically, and (ii) SDI-AQM that drops packets randomly. Using a simple Markov
Chain model, we compare these new policies with the well-known RED AQM, highlighting
the loss behavior. We also perform simulations, and using a number of metrics, compare
the performance of (mostly) small flows obtained under the new AQMs against that
obtained under the traditional drop-tail buffer, RED as well as a size-based flow-scheduler
PS + PS. Surprisingly, RED is seen to give better performance than the size-based flow-
scheduler developed specifically for improving the response times of small flows. Further,
we find that the spike-detecting AQM policies give better performance to small flows than
any other policy (including RED). Of the three scenarios we consider, two experiment with
different buffer sizes—one with large buffer size (BDP) and another with small size (frac-
tion of BDP). The third scenario considers the case where slow and fast flows compete.
The results show that the spike-detecting AQM policies, unlike other policies, consistently
give improved performance to small flows in all three scenarios. Of the two, the SDI-AQM
performs better with respect to some metrics.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

* This work was done when the author was affiliated with IIT Mandi.
** This article is an extended version of the paper published in IEEE
IPCCC 2011 [1]. In comparison to the conference paper, Section 2
discusses elaborately on related works, Section 4 is new, providing
insights using a model based on Markov Chain, and Section 6 presents
more results from simulations.

E-mail address: eledmd@nus.edu.sg

1389-1286/$ - see front matter © 2012 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.comnet.2012.04.025

Internet flow-size distribution exhibits strong heavy-
tail behavior. This means that a small percentage of flows
contribute to a large percentage of the Internet’s traffic vol-
ume [2]. It is also known as the 80-20 rule, as 20% of the
flows carry 80% of the bytes. It has become customary to
call the large number of small flows mice flows, and the

http://dx.doi.org/10.1016/j.comnet.2012.04.025
mailto:eledmd@nus.edu.sg
http://dx.doi.org/10.1016/j.comnet.2012.04.025
http://www.sciencedirect.com/science/journal/13891286
http://www.elsevier.com/locate/comnet

3088 D.M. Divakaran / Computer Networks 56 (2012) 3087-3098

small number of large flows elephant flows. Examples of
mice flows include tweets, chats, web-search queries,
HTTP requests, etc., for which users expect very short re-
sponse times'; while elephant flows are usually the down-
loads that run in the background (say, a kernel image or a
movie, involving MBs and GBs of data), the response times
for which are expected to be higher than that for the mice
flows by orders of magnitude.

The current Internet architecture has an FCFS server and
a drop-tail buffer at most of its nodes. This, along with the
fact that most of the flows in the Internet are carried by
TCP [3], hurt the response times of mice flows adversely.
Specifically, some of the important reasons for the biases
are:

e As mice flows do not have much data, they almost
always complete in the slow-start phase, never reach-
ing the congestion-avoidance phase; and thus typically
having a small throughput.

A packet-loss to a small flow most often results in a
time-out due to the small congestion-window (cwnd)
size; and time-outs increase the completion times of
small flows many-fold. On the other hand, a large flow
is most probably in the congestion-avoidance phase,
and hence has congestion-windows of large sizes.
Therefore, for a large flow, packet-losses are usually
detected using duplicate ACKs, instead of time-outs,
thereby being able to recover faster.

The increase in round-trip-time (RTT) due to large
queueing delays hurts the small flows more than the
large flows. Again, for the large flows, the large cwnd
makes up for the increase in RTT.

The biases against small flows become more relevant
today—recent studies show an increase in the mice-
elephant phenomenon, with a stronger shift towards a
90-10 rule [4]. Most solutions to this problem can be
grouped into a class of priority-scheduling mechanisms
that schedule packets based on the ongoing sizes of the
flows they belong to.

The priority schedulers, which we hereafter refer as size-
based schedulers, give priority to ‘potential’ small flows over
large flows, thereby improving the response time of small
flows. They range from SRPT [5] to LAS [6] to MLPS schedul-
ing policies [7]. The different size-based schedulers need to
identify flows and distinguish between small and large
flows. Most of these mechanisms have multiple queues with
different priorities, and use the information of ongoing flow-
sizes to decide on where to queue an incoming packet. Other
works give priority to packets of small flows in space, that is
in buffer. We observe that most of such works dealing with
giving preferential treatment (either in space and/or in
time) based on the size assume that the router keeps track
of sizes of all flows. This assumption is challenged by the
scalability factor, since tracking flow-size information re-
quires flow-table update for every arriving packet. Given
that the action involves lookup, memory access and update,
this will require fast access as well as high power. Besides, as

! We often use ‘completion time’ to refer to ‘response time’.

the number of flows in progress can grow to a large value un-
der high load, this can also become an overhead. Hence,
most existing solutions face a roadblock when it comes to
implementation.

The spike-detecting AQM proposed here is inspired
from the TLPS/SD (two-level-processor-sharing with
spike-detection) system proposed in [8]. In TLPS/SD, a large
flow is served in the high-priority queue, until it is de-
tected as ‘large,’” which happens when its congestion-win-
dow is large enough (>2") to ‘cause’ congestion (buffer
length >p) in the link (for pre-determined values of # and
B). Such detected large flows are de-prioritized by serving
them in a low-priority queue thereafter.

In this paper, we present spike-detecting AQMs (SD-
AQMs in short). The major difference between SD-AQMs
and the existing works that improve the response times
of small flows (in comparison to the drop-tail buffer with
FCFS scheduler), is that, SD-AQMs do not need to identify
small and large flows. Second, these new AQMs do not
need to track sizes of flows. Third, they use a single queue,
removing the need for two or more virtual queues. Based
on the core simple idea of detecting spikes, we present
two policies: (i) SDS-AQM that drops packets deterministi-
cally, and (ii) SDI-AQM that drops packets randomly. We
use ‘SD-AQM policies’ to refer to both these policies.

As far as we know, there is also no existing work that
study the performance of small flows under the well-known
RED (random-early-drop) AQM policy [9]. Therefore, in this
work, we also analyze performance of the RED AQM. Using a
simple Markov Chain model we compare the performance of
RED and SD-AQM policies, and highlight why small flows
gain under SD-AQM policies in comparison to RED.

We then use simulations to study the performance of
small flows under SD-AQM policies, RED, the traditional
drop-tail (with FCFS scheduler) and PS + PS scheduler—a
size-based scheduling strategy developed specifically to
improve the response times of small flows. We perform
studies using various metrics under three scenarios: (i)
with bottleneck buffer size equal to BDP, (ii) with small
bottleneck buffer (of size 1000 packets), and (iii) where
slow and fast flows compete. In general, our observations
reveal that small flows perform worst under the drop-tail
approach. In comparison to drop-tail, the affects on large
flows are negligible under other policies. The results in
the large-buffer scenario show that while small flows un-
der RED get similar performance as under PS + PS, med-
ium- and large-size flows are less penalized in RED;
whereas in the small-buffer scenario, RED performs better
than PS + PS even for small flows. In both the scenarios, the
SD-AQM policies are observed to perform better than all
other policies. Not only small flows, but also medium-
and large-size flows get better performance in SD-AQM
policies. Between the two SD-AQM policies, SDI-AQM is a
better choice, as it induces lesser number of timeouts on
the overall traffic. The performance of SDI policy becomes
more evident in the third scenario, where the flows taking
the path with larger RTTs face a much lesser number of
timeouts and congestion-window cuts in comparison to
other policies.

The remaining of this paper is organized as follows.
Next section discusses the previous works on mitigating

Download English Version:

https://daneshyari.com/en/article/452099

Download Persian Version:

https://daneshyari.com/article/452099

Daneshyari.com

https://daneshyari.com/en/article/452099
https://daneshyari.com/article/452099
https://daneshyari.com/

