
S-CLONE: Socially-aware data replication for social networks

Duc A. Tran ⇑, Khanh Nguyen, Cuong Pham
Department of Computer Science, University of Massachusetts, Boston, MA 02125, USA

a r t i c l e i n f o

Article history:
Received 24 September 2011
Received in revised form 18 February 2012
Accepted 20 February 2012
Available online 3 March 2012

Keywords:
Online social networks
Distributed storage
Data replication

a b s t r a c t

Online social networking has become one of the most important forms of today’s commu-
nication. While an online social network can be attractive for many socially interesting
features, its competitive edge will diminish if it is not able to keep pace with increasing
user activities. Deploying more servers is an intuitive way to make the system scale, but
for the best performance one needs to determine where best to put the data, whether rep-
lication is needed, and, if so, how. This paper is focused on replication; specifically, we pro-
pose S-CLONE, a socially-aware data replication scheme which can significantly improve a
social network’s efficiency by taking into account social relationships of its data. S-CLONE’s
performance is substantiated in our evaluation study.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

Evidenced by the success of Facebook, Twitter, and oth-
ers alike, online social networks (OSNs) have become ubiq-
uitous, offering novel ways for people to access information
and communicate with each other. Nielsen recently pub-
lished stats [1] showing that three of the world’s top 10
popular brands online are social-media related and, for
the first time ever, social network or blog sites are visited
by 75% of global consumers who go online. Among mobile
users, social networking would surpass voice as the most
popular form of mobile communication by 2015, according
to Airwide Solutions [2].

The increasing popularity of social networking is unde-
niable, and so scalability is an important issue for any OSN
that wants to serve a large number of users. A typical way
to cope with scalability is adding servers, as it results in ex-
panded storage capacity as well as lower server traffic. In a
distributed storage system, where the data is partitioned
across a number of servers, the data can also be replicated
to provide a high degree of availability in case of failures.
This paper considers the aspect of data replication for
OSNs, with the following motivations:

� While data partitioning and replication is a well-known
problem in the literature of distributed database sys-
tems [3–9], OSNs represent a novel class of data sys-
tems. In an OSN, a data read for a user often requires
fetching the data of her neighbors in the social graph
(e.g., friends’ status messages in Facebook or connec-
tions’ updates in LinkedIn). This social locality should
be taken into account when determining which servers
to store these data so that, given a read query, all of its
relevant data can be returned quickly and efficiently.
The concept of social locality does not exist in conven-
tional storage systems.
� The importance of social locality in data storage for OSNs

has been substantiated in earlier work [10,11]. It is sug-
gested that efficiency can be improved by reducing the
number of servers required to answer each read query,
and, therefore, the data of socially connected users
should be located on the same server if at all possible.
This preservation of social locality, unfortunately, does
not hold for today’s OSNs which rely on DHT to partition
the data across the servers [12]. For the best efficiency, an
ideal replication scheme designed for such a data parti-
tion should be socially-aware, meaning that it should
try to preserve social locality in replicating the data.

Our problem is to devise a socially-aware replication
scheme that can run on top of any given data partition.

1389-1286/$ - see front matter � 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.comnet.2012.02.010

⇑ Corresponding author.
E-mail addresses: duc@cs.umb.edu (D.A. Tran), knguyen@cs.umb.edu

(K. Nguyen), cpham@cs.umb.edu (C. Pham).

Computer Networks 56 (2012) 2001–2013

Contents lists available at SciVerse ScienceDirect

Computer Networks

journal homepage: www.elsevier .com/ locate/comnet

http://dx.doi.org/10.1016/j.comnet.2012.02.010
mailto:duc@cs.umb.edu
mailto:knguyen@cs.umb.edu
mailto:cpham@cs.umb.edu
http://dx.doi.org/10.1016/j.comnet.2012.02.010
http://www.sciencedirect.com/science/journal/13891286
http://www.elsevier.com/locate/comnet


OSNs of our interest are those that want a fixed budget for
the disk space and update cost required for replication.
Furthermore, although users are not equally active in the
network, we want the same degree of data availability
for every user so that everyone has an equal chance to suc-
cessfully access her data under any failure condition. In the
context of our problem, the number of replicas therefore is
identical for every user. We propose a replication scheme
called S-CLONE as the solution to this problem. The effi-
ciency and performance of S-CLONE are substantiated in
our evaluation study.

The remainder of this paper is structured as follows. We
discuss the related work in Section 2. We define the prob-
lem formally in Section 3. The details of S-CLONE are pre-
sented in Section 4. The evaluation results are reported in
Section 5. The paper is concluded in Section 6.

2. Related work

There are two main approaches to improving a data sys-
tem’s scalability: vertical scaling and horizontal scaling.
While vertical scaling scales ‘‘up’’ the system by adding
more hardware resources to the existing servers, horizon-
tal scaling scales ‘‘out’’ the system instead, by adding com-
modity servers and partitioning the workload across these
servers. Vertical scaling is simple to manage, but horizontal
scaling is more cost-effective and avoids the single-point-
of-failure and bottleneck problems. The latter has been a
de facto standard when it comes to managing data at mas-
sive scale for many OSNs today.

The most prominent distributed storage scheme for
OSNs is Cassandra [12] which is based on horizontal scal-
ing. Cassandra, originally deployed for Facebook to en-
hance its Inbox Search feature, has been used by other
OSNs such as Twitter, Digg, and Reddit. While there exist
well-known distributed file and relational database sys-
tems such as Ficus [5], Coda [6], GFS [7], Farsite [8], and
Bayou [9], these systems do not scale with high read/write
rates which is the case for OSNs. Cassandra’s purpose is to
be able to run on top of an infrastructure of many com-
modity storage hosts (possibly spread across different data
centers), with high write throughput without sacrificing
read efficiency.

Cassandra is a key-value store resembling a combina-
tion of a BigTable data model [13] running on an Amazon’s
Dynamo-like infrastructure [14]. The data partitioning
scheme underlying both Cassandra and Dynamo is based
on consistent hashing [15], using an order-preserving
DHT. The idea is to organize the servers as nodes in a circu-
lar space, called a ring, where each server is given a ran-
dom value in this space representing its position on the
ring. Each data item, identified by a key, is assigned to a
coordinator node by hashing this key to yield its position
on the ring, and then walking the ring clockwise to find
the first node right after the item’s position. Thus, each
node becomes responsible for the data items hashed to
the region in the ring between it and its predecessor node.
A read query or a write query of a user is always sent to its
coordinator node. For replication, Cassandra allows the
application to choose its replication policy on top of the

data partition. One policy provided by Cassandra is to rep-
licate each data item on the successor nodes of its coordi-
nator node on the ring. Other policies are also provided
taking into account the load balancing across the servers
within a data center, as well as across multiple data
centers.

The drawback of DHT is that hashing data to random
servers does not preserve social locality. Data queries in
OSNs are usually light-load and it has recently been
shown in [11] that network I/O can substantially be im-
proved at the server side by keeping all of the relevant
data of each query local to the same server. The objective
of [11] is to maintain social locality perfectly, i.e., every
two neighbor users must have their data co-located,
which may result in some users having more replicas
than the disk space can afford. In contrast, we attempt
to preserve social locality under a fixed space budget for
replication. In our case, there may be two neighbor users
having data stored on different servers, but we try to
avoid this case if possible. We also aim to provide every
user with equal chance to successfully access data under
any failure condition.

It is noted that besides mainstream online social net-
works such as Facebook and LinkedIn, there are efforts to
design an OSN as a decentralized system, such as Dias-
pora,1 where a user is free to choose its own hosting server.
Decentralization not only addresses the DDoS security prob-
lem but also provides more privacy and freedom to the
users. The research in this paper is not directly applicable
to this interesting direction. However, our proposed concept
of social locality in replication can be useful to designing a
replication scheme for such decentralized OSNs.

3. Problem formulation

We consider an online social network of N user nodes
whose data is distributed across a set of M servers. The
data of our interest is the data belonging to each user that
must be downloaded by default when she spends time on-
line in the network. For example, in the case of Facebook,
where a user’s data includes her profile information, wall
messages, links, pictures, and video clips, we are interested
in the messages which must be displayed by default on the
user screen; these messages, consequently, are the type of
contents most frequently downloaded from the servers.
The contents such as pictures and video clips are down-
loaded much less often and only on demand; hence, not
our focus in this paper.

We assume an existing partition of the N users’ data to
the M servers, which is represented by a boolean notation
pis where pis = 1 if and only if user i’s data is stored at server
s, and

PM
s¼1pis ¼ 1 8 i. In our replication problem, we need

to find an efficient way to store K replicas for each user’s
data on the M servers (K < M). The value for K is chosen
depending on the replication budget of the system and
its desired availability. We use a boolean notation, xis, to
represent the replica assignment, where xis = 1 if and only
if user i’s data is replicated at server s.

1 http://diasporafoundation.org/.

2002 D.A. Tran et al. / Computer Networks 56 (2012) 2001–2013

http://diasporafoundation.org/


Download	English	Version:

https://daneshyari.com/en/article/452130

Download	Persian	Version:

https://daneshyari.com/article/452130

Daneshyari.com

https://daneshyari.com/en/article/452130
https://daneshyari.com/article/452130
https://daneshyari.com/

