
Improving retouched Bloom filter for trading off selected false
positives against false negatives

Benoit Donnet a,*, Bruno Baynat b,**, Timur Friedman b,***

a Université catholique de Louvain, Louvain-la-Neuve, Belgium
b UPMC Sorbonne Universités and CNRS, Paris, France

a r t i c l e i n f o

Article history:
Received 8 September 2009
Received in revised form 4 June 2010
Accepted 8 July 2010
Available online 15 July 2010
Responsible Editor: C. Westphal

Keywords:
Bloom filters
False positives
False negatives
Bit clearing
Measurement
Traceroute

a b s t r a c t

Where distributed agents must share voluminous set membership information, Bloom fil-
ters provide a compact, though lossy, way for them to do so. Numerous recent networking
papers have examined the trade-offs between the bandwidth consumed by the transmis-
sion of Bloom filters, and the error rate, which takes the form of false positives. This paper
is about the retouched Bloom filter (RBF). An RBF is an extension that makes the Bloom fil-
ter more flexible by permitting the removal of false positives, at the expense of introducing
false negatives, and that allows a controlled trade-off between the two. We analytically
show that creating RBFs through a random process decreases the false positive rate in
the same proportion as the false negative rate that is generated. We further provide some
simple heuristics that decrease the false positive rate more than the corresponding
increase in the false negative rate, when creating RBFs. These heuristics are more effective
than the ones we have presented in prior work. We further demonstrate the advantages of
an RBF over a Bloom filter in a distributed network topology measurement application. We
finally discuss several networking applications that could benefit from RBFs instead of
standard Bloom filters.

� 2010 Elsevier B.V. All rights reserved.

1. Introduction

Introduced in 1970 [1], it is just in the past decade that
the Bloom filter has attracted attention from the network-
ing research community [2]. A Bloom filter compactly en-
codes set information into a bit vector that can then be
queried regarding set membership. A vector of all zeroes
represents the empty set. To record a key as being in the
set, hash it to obtain an index into the vector and set the
bit at that position to one. You may use multiple hash func-
tions, in which case you set several bits to one. To query if a
key is in the set, check if all hash positions are set to one.
Though the filter will occasionally return a false positive,

erroneously claiming that a key belongs to the set, it will
never return a false negative, erroneously claiming that a
key does not belong. You may set the vector size and num-
ber of hash functions in light of the anticipated set size, to
aim for a particular trade-off between the size of the bit
vector and the false positive rate.

A prime appeal of the Bloom filter to networking
researchers comes from the bandwidth efficiencies that it
offers for the transmission of set membership information
between networked hosts [3]. We ourselves have proposed
their use for large-scale route tracing infrastructures [4].
Continuously running production systems of this sort in-
clude Archipelago [5], DIMES [6], RIPE TTM [7], iPlane [8], Gul-
liver [9], Ono [10], and TDMI [11]. They have in common
the placement of agents across the Internet so as to obtain
measurements from a variety of vantage points. If these
agents are to coordinate their efforts, as Archipelago agents
will do for their scamper measurements [12], then they
must communicate between each other, either directly or

1389-1286/$ - see front matter � 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.comnet.2010.07.003

* Corresponding author. Tel.: +32 10 478718; fax: +32 10 450345.
** Corresponding author.

*** Corresponding author.
E-mail addresses: benoit.donnet@uclouvain.be (B. Donnet), bruno.

baynat@lip6.fr (B. Baynat), timur.friedman@lip6.fr (T. Friedman).

Computer Networks 54 (2010) 3373–3387

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier .com/ locate/comnet

http://dx.doi.org/10.1016/j.comnet.2010.07.003
mailto:benoit.donnet@uclouvain.be
mailto:bruno.baynat@lip6.fr
mailto:baynat@lip6.fr
mailto:timur.friedman@lip6.fr
http://dx.doi.org/10.1016/j.comnet.2010.07.003
http://www.sciencedirect.com/science/journal/13891286
http://www.elsevier.com/locate/comnet

via a central server. Such communication is potentially
bandwidth-hungry, which is a problem if the agents are
expected to adhere to tight bandwidth constraints, as they
are for Ono [13, Section 5.3].

This paper describes a way for distributed route tracing
agents to coordinate to reduce their impact on end-hosts.
For each trace that an agent makes, it records the IP address
that it encounters one hop before the end host. We call this
the penultimate node. The agent encodes the set of penulti-
mate nodes in a Bloom filter, which it sends to other agents.
Another agent consults the filter while tracing: if it encoun-
ters an address already seen by the first agent, it stops trac-
ing that route and goes onto another one.

Using Bloom filters in this way allows a trade-off be-
tween filter size and coordination failures. A smaller filter
saves on the bandwidth required for coordination. A larger
filter reduces on average the rate of false positives, which
stop route tracing before the penultimate node is reached
and thereby deprive the system of potentially useful infor-
mation. Without the Bloom filter, there would be no such
flexibility. Replacing the filter with an explicit list of penul-
timate nodes would limit the infrastructure operator to
one extreme end of this trade-off: high coordination band-
width in exchange for no traces that stop too early. This,
despite the fact that some low level of coordination failures
might perhaps be tolerable.

Researchers have proposed the Bloom filter for so many
networked applications precisely to allow them to enjoy
this sort of flexible trade-off. However we can do even bet-
ter, as this trade-off is more simplistic and limiting than it
needs to be. Simplistic, because the false positive rate ex-
presses an average based on an idealized query distribu-
tion in which all keys are equiprobable, whereas actual
system performance depends on that distribution and the
identities of those keys that cause the false positives. Lim-
iting, because the system might tolerate false negatives,
but the Bloom filter does not allow us to introduce false
negatives into the trade-off.

This paper describes the retouched Bloom filter (RBF), a
modification to the standard Bloom filter that allows us
to remove selected false positives at the cost of introducing
random false negatives. We create an RBF from a Bloom fil-
ter, as Section 3 describes, by selectively changing individ-
ual bits from 1 to 0, while the size of the filter and the
query mechanism remain unchanged. As Section 3.1 shows
analytically, if we create an RBF through a purely random
process then we decrease the false positive rate, on aver-
age, in the same proportion as the false negative rate that
we generate. Simple heuristic algorithms that we present
in Section 3.1 do better than the random process and lower
the false positive rate by a greater degree, on average, than
the corresponding increase in the false negative rate. In
addition, Section 4 provides mechanisms that allow us to
selectively remove the most troublesome false positives,
further improving performance when we take the query
distribution into account.

The RBF algorithms require space that is at most a small
constant multiple of the Bloom filter’s vector size. Com-
pared to the creation of a standard Bloom filter, the RBF
algorithms also incur additional processing costs related
to key removal. These costs are a constant multiple of a

number of RBF parameters, such as the number of hash
functions and the number of false positives to remove.
The additional processing and storage requirements that
are incurred when switching from Bloom filters to RBFs
are restricted entirely to the locations at which the RBFs
are created. There is strictly no addition to the critical re-
source in our networked scenario, which is the bandwidth
consumed by communication between measurement
points. At the receiver of the RBF, queries take place using
exactly the same mechanism as for the Bloom filter, incur-
ring no additional space or time complexity.

Compared to our previous work [4], which introduced
the RBF, the algorithms in this paper are more effective.
By more carefully tracking the quantities of false negatives
generated and false positives removed at each step of an
algorithm, we achieve a greater decrease, on average, in
the false positive rate for a given increase in the false neg-
ative rate. Based on simulations, we demonstrate that our
new improved algorithms perform between 10% and 20%
better on average than the simple algorithms we previ-
ously proposed. The case study in Section 5 has been rerun
using these improved algorithms.

The work that we present here is the first that subjects
false negatives in a Bloom filter variant to either analytic or
simulation studies. In particular, our work is the first to
explicitly study the trade-off between false positives and
false negatives and it is the first to consider the efficiency
of the means employed for such a trade-off. Section 6 de-
scribes the extensive related work on Bloom filters [3,14–
20]. Some of these extensions, such as the anti-Bloom filter
[14] and the generalized Bloom filter [15], target the sup-
pression of false positives, or the removal of bits in the vec-
tor in general. Some of them (such as the variable Bloom
filter [19]) even provide a trade-off between the false posi-
tive rate and the false negative rate. Nevertheless, as we
show, these variants differ significantly from the standard
Bloom filter in that they either increase the memory cost
(i.e., increase the size of the filter) or they modify the filter
behavior when performing membership queries.

The remainder of this paper is organized as follows:
Section 2 presents the standard Bloom filter, using notation
introduced by Broder and Mitzenmacher [2]; Section 3 pre-
sents the RBF, and shows analytically that the reduction in
the false positive rate is equal, on average, to the increase
in the false negative rate even as random 1s in a Bloom fil-
ter are reset to 0s; Section 4 presents improved methods
for selectively clearing 1s that are associated with the most
troublesome false positives, and shows through simula-
tions that they reduce the false positive rate by more, on
average, than they increase the false negative rate; Sec-
tion 5 describes the use of RBFs in a network measurement
application; Section 6 discusses several Bloom filter vari-
ants, compares RBFs to them and discusses other network-
ing usages of RBFs; finally, Section 7 summarizes the
conclusions and future directions for this work.

2. Bloom filters

A Bloom filter [1] is a vector v of m bits that codes the
membership of a subset A = {a1,a2, . . . ,an} of n elements of

3374 B. Donnet et al. / Computer Networks 54 (2010) 3373–3387

Download English Version:

https://daneshyari.com/en/article/452273

Download Persian Version:

https://daneshyari.com/article/452273

Daneshyari.com

https://daneshyari.com/en/article/452273
https://daneshyari.com/article/452273
https://daneshyari.com

