Computer Networks 53 (2009) 1570-1586

Contents lists available at ScienceDirect

et

Computer Networks ik

journal homepage: www.elsevier.com/locate/comnet

Transparent autonomization in CORBA
S. Masoud Sadjadi®*, Philip K. McKinley ®

2 Florida International University, Miami, FL 33199, United States
b Michigan State University, East Lansing, MI 48824, United States

ARTICLE INFO ABSTRACT

Article history:
Available online 29 December 2008

Increasingly, software systems are constructed by integrating and composing multiple
existing applications. The resulting complexity increases the need for self-management
of the system. However, adding autonomic behavior to composite systems is difficult, espe-
cially when the constituent components are heterogeneous and they were not originally
designed to support such interactions. Moreover, entangling the code for self-management
with the code for the business logic of the original applications may actually increase the
complexity of the systems, counter to the desired goal. In this paper, we address autonom-
ization of composite systems that use CORBA, one of the first widely used middleware plat-
forms introduced more than 17 years ago that is still commonly used in numerous systems.
We propose a model, called Adaptive CORBA Template (ACT), that enables autonomic
behavior to be added to CORBA applications automatically and transparently, that is, with-
out requiring any modifications to the code implementing the business logic of the original
applications. To do so, ACT uses “generic” interceptors, which are added to CORBA applica-
tions at startup time and enable autonomic behavior to be introduced later at runtime. We
have developed ACT/], a prototype of ACT in Java. We describe a case study in which ACT/]
is used to introduce three types of autonomic behavior (self-healing, self-optimization, and
self-configuration) to a distributed surveillance application.

Keywords:
Transparent shaping
Adaptive middleware
CORBA

Autonomic computing
Self-optimization
Dynamic adaptation
Quality-of-service
Mobile computing
Generic proxy

Published by Elsevier B.V.

1. Introduction A typical CORBA application comprises heterogeneous
software components, often developed in different pro-
gramming languages and targeting different platforms

(operating systems, devices, and networks). Indeed, a ma-

Driven by the Internet revolution and its effects on
information technology, the last decade has witnessed

proliferation of integration middleware technologies
addressing software integration problems [1]. Instead of
developing new software systems from scratch, the focus
of integration middleware technologies has been on lever-
aging available software resources by enabling their inter-
operation [2]. CORBA 2.0 [3], released in 1996, was among
the first middleware technologies to address integration is-
sues [4], and since then CORBA has been successfully used
in the integration of numerous software systems [5].

* Corresponding author. Tel.: +1 305 348 1835.
E-mail addresses: sadjadi@cs.fiu.edu (S.M. Sadjadi), mckinley@cse.
msu.edu (P.K. McKinley).
URLs: http:/[www.cs.fiu.edu/~sadjadi (S.M. Sadjadi), http://[www.cse.
msu.edu/~mckinley (P.K. McKinley).

1389-1286/$ - see front matter Published by Elsevier B.V.
doi:10.1016/j.comnet.2008.12.012

jor goal of CORBA and other middleware platforms is to
hide this heterogeneity from the business logic of the inte-
grated applications. While this approach helps developers
to integrate their systems more easily, the management
of complex CORBA-based systems is challenging, especially
as they evolve to accommodate new software and hard-
ware technologies. In particular, managing composite sys-
tems involves ensuring non-functional concerns such as
quality-of-service, fault tolerance, and security. Unfortu-
nately, these concerns are often directly affected by the
underlying technologies and the environments in which
the application is deployed.

Autonomic computing [6] promises a general solution to
the management problem that relies on complex systems


mailto:sadjadi@cs.fiu.edu
mailto:mckinley@cse.msu.edu
mailto:mckinley@cse.msu.edu
http://www.cs.fiu.edu/~sadjadi
http://www.cse. msu.edu/~mckinley
http://www.cse. msu.edu/~mckinley
http://www.sciencedirect.com/science/journal/13891286
http://www.elsevier.com/locate/comnet

S.M. Sadjadi, P.K. McKinley / Computer Networks 53 (2009) 1570-1586 1571

to manage themselves. Instead of requiring low-level
interaction with users or system administrators, self-man-
aging systems would require only high-level human guid-
ance - defined by goals and policies - in order to work as
expected. Each autonomic element in the system com-
prises a managed element, implementing the business logic
of the system, and an autonomic manager, implementing
the self-managing behavior of the system. However, self-
management concerns (self-healing, self-optimization,
self-configuration, and self-protection) tend to crosscut
the functional decomposition in the managed elements
[7-9]. Consequently, if the code for self-management is
entangled with the code for the business logic of the origi-
nal systems, then the complexity of managing the resulted
autonomic system may actually increase, contradicting the
purpose of autonomic computing.

This paper describes the Adaptive CORBA Template (ACT),
a framework that enables dynamic addition of autonomic
behavior to existing CORBA systems, without modifying
the application code. At startup time, ACT turns the con-
stituent software programs into managed elements by
transparently inserting generic hooks capable of intercept-
ing all CORBA remote interactions. Next, at run time, these
hooks can be used to introduce autonomic managers into
the system. An autonomic manager in turn can intercept
the requests, replies, and exceptions that pass through
the CORBA Core (called ORB, which stands for Object Re-
quest Broker), adapting or redirecting them as needed.
Effectively, ACT enables transparent autonomization (i.e.,
transparent addition of self-managing behavior) in CORBA
applications.

We identify three types of applications that may benefit
from such a capability. First, dependable applications are
required to operate continuously without interruption;
code for handling newly discovered faults and in general
self-managing behavior can be added to these applications
as they execute. Second, embedded applications are re-
quired to provide very small footprints; a minimal auto-
nomic code can be added to the application at compile or
startup time, while optional and temporary autonomic
code can be swapped in and out as needed during run time.
Third, the source code for some legacy CORBA applications
may be unavailable, or modifying the source code may be
undesirable. Such applications can be autonomized trans-
parently using ACT, without modifying or even recompil-
ing the original application source code.

Various aspects of the ACT framework have been de-
scribed in earlier conference papers [10,11]; this paper
provides a complete picture of the ACT project, presents
a more comprehensive architectural solution, and includes
additional details of the autonomization process and
experimental results for three different types of autonomic
behavior: self-healing, self-optimization, and self-configu-
ration. The remainder of this paper is organized as follows.
Section 2 provides a background on CORBA and describes
the architecture and operation of ACT, as well as a Java pro-
totype, ACT/]. Section 3 presents a case study where we
used the ACT prototype to add three different types of
autonomic behavior to an existing surveillance application.
Section 4 categorizes related research projects, and Section
5 provides concluding remarks.

2. ACT architecture and operation

ACT is intended to support the construction of adaptive
CORBA applications from existing CORBA applications
transparently, that is, without modifying the original appli-
cation functionality. ACT should enable CORBA applica-
tions to support adaptive behavior at run time without
the need to stop, modify, recompile, relink, or restart the
applications. Moreover, ACT should introduce nominal
overhead to the performance of the existing applications.
With these design goals in mind, we developed a two-step
process that supports transparent autonomization in exist-
ing CORBA applications. In the rest of this section, we pro-
vide a brief overview of CORBA and the autonomization
process, describe the architecture and internal operation
of ACT, and discuss the prototype implementation of ACT
in Java.

2.1. CORBA background

The Common Object Request Broker Architecture (CORBA)
[12] is an integration and distribution middleware specifi-
cation defined by the Object Management Group (OMG)
[4]. Fig. 1 depicts a simple client-server CORBA application
comprising a client and a server program and their orienta-
tion among three system layers: application, middleware,
and network.

Let us assume that the client has a valid reference to the
CORBA object realized by the servant. For clarity, a broker
program is not shown. The Object Request Broker (ORB), the
core of CORBA, allows objects to interact transparently
with other objects (located locally or remotely). A CORBA
object is represented by its interface, is identified by its ref-
erence, and is realized in an object-oriented program as a
local object called the servant. The client calls methods
on the servant as if the CORBA object were located in the
client address space. The Interface Definition Language
(IDL) is a language for defining CORBA interfaces. An IDL
compiler is used to automatically generate the code for
stubs and skeletons. An IDL stub represents a servant lo-
cally in the client address space and an IDL skeleton repre-
sents a client locally in the servant address space. IDL stubs
and skeletons marshal and unmarshal requests and re-
sponses to enable object interactions over a network.

CORBA Portable Request Interceptors provide a transpar-
ent mechanism to intercept messages (reified requests, re-
plies, and exceptions) inside the ORBs of a CORBA
application. For example, a portable interceptor can be
used to forward a particular request to a different CORBA
object (e.g., forwarded request flows 2, 3, and 4 in Fig. 1).
However, to ensure portability, interceptors are not al-
lowed to reply to intercepted requests or to modify the
parameters [12]. This restriction limits the ability of re-
quest interceptors alone to adapt the behavior of CORBA
applications.

2.2. Autonomization process

Fig. 2 illustrates the two-step process to autonomize an
existing CORBA application using ACT. As this process is



Download English Version:

https://daneshyari.com/en/article/452305

Download Persian Version:

https://daneshyari.com/article/452305

Daneshyari.com


https://daneshyari.com/en/article/452305
https://daneshyari.com/article/452305
https://daneshyari.com/

