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a b s t r a c t 

We extend a recently proposed 2D depth-integrated Finite Volume solver for the nonlinear shallow wa- 

ter equations with non-hydrostatic pressure distribution. The proposed model is aimed at simulating both 

nonlinear and dispersive shallow water processes. We split the total pressure into its hydrostatic and dy- 

namic components and solve a hydrostatic problem and a non-hydrostatic problem sequentially, in the 

framework of a fractional time step procedure. The dispersive properties are achieved by incorporating 

the non-hydrostatic pressure component in the governing equations. The governing equations are the 

depth-integrated continuity equation and the depth-integrated momentum equations along the x, y and 

z directions. Unlike the previous non-hydrostatic shallow water solver, in the z momentum equation, we 

retain both the vertical local and convective acceleration terms. In the former solver, we keep only the 

local vertical acceleration term. In this paper, we investigate the effects of these convective terms and the 

possible improvements of the computed solution when these terms are not neglected in the governing 

equations, especially in strongly nonlinear processes. The presence of the convective terms in the verti- 

cal momentum equation leads to a numerical solution procedure, which is quite different from the one 

of the previous solver, in both the hydrostatic and dynamic steps. We discretize the spatial domain us- 

ing unstructured triangular meshes satisfying the Generalized Delaunay property. The numerical solver is 

shock capturing and easily addresses wetting/drying problems, without any additional equation to solve 

at wet/dry interfaces. We present several numerical applications for challenging flooding processes en- 

countered in practical aspects over irregular topography, including a new set of experiments carried out 

at the Hydraulics Laboratory of the University of Palermo. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

In recent decades, the NonLinear Shallow Water Equations (NL- 

SWEs) with hydrostatic pressure distribution have been widely 

used to simulate wave processes in inland shallow waters (e.g., 

rivers and estuaries) or in water wave transformations in nearshore 

zones (from the surf zone to the shoreline) for coastal processes. 

The primary reasons for their use are their simplicity and accu- 

racy over irregular topography. Unfortunately, the NLSWEs with 

hydrostatic pressure distribution are unable to simulate some dis- 

persive features of water waves (e.g., waves with different fre- 

quencies travel at different speeds) ( Walters, 2005 ; Wei and Jia, 

2013 ; Yamazaki et al., 2008, 2011 ) or secondary free-surface undu- 

lations at wave fronts or tails (undular bores and shocks generated 

by dam-break flows or tsunamis), which are dispersive in nature 

( Soares-Frazao and Zech, 2002 ; Kim and Lynett, 2011 ). 
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Generally, a good numerical model for water waves should 

guarantee a balance between the frequency dispersion and non- 

linearity. 

In recent decades, several methods for solving the 3D RANS 

equations have been proposed, e.g., RANS models ( OpenFOAM®

Foundation 2013 ), Smoothed Particle Hydrodynamics methods 

( Dalrymple and Rogers, 2006 ) and Volume Of Fluids methods ( Hirt 

and Nichols, 1981 ), but these approaches generally have very high 

computational costs. 

Among the depth-integrated equations models, the Boussinesq- 

type models (BTMs) and NLSWEs with a non-hydrostatic pressure 

distribution are two candidates that guarantee a good compromise 

between nonlinearity and frequency dispersion. 

Weak nonlinearity and dispersion affect the classical formu- 

lation of the BTMs ( Peregrine, 1967 ), and the high-order BTMs 

proposed to overcome these problems present complex numerical 

discretization and high computational burdens ( Brocchini, 2013 ; 

Yamazaki et al., 2008 ). In general, due to the high-order partial 

derivative terms, the BTMs suffer from the use of extra terms and 

empirical criteria for wave breaking simulation and energy dissipa- 
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tion, as well as the complex wetting/drying procedures ( Brocchini, 

2013 ; Wei and Jia, 2013 ). 

The use of NLSWEs models with non-hydrostatic pressure dis- 

tribution is a relatively new approach. These models account for 

the vertical acceleration using the non-hydrostatic pressure, and 

they include the non-hydrostatic effects by splitting the pressure 

term into its hydrostatic and dynamic (or non-hydrostatic) compo- 

nents ( Casulli and Stelling, 1998 ). Two fractional-step procedures 

are generally applied: the pressure projection and pressure cor- 

rection methods ( Cui et al., 2002 and cited references). From now 

on, “hydrostatic” and “non-hydrostatic” models refer to the models 

with hydrostatic and non-hydrostatic pressure distribution, respec- 

tively. 

Wave breaking simulation is a challenging topic for depth- 

integrated NLSWEs models. It is well known that if the governing 

equations are written in a conservative form, the hydrostatic NL- 

SWEs models properly simulate discontinuous flows (e.g., shocks, 

hydraulic jumps, and bores) ( LeVeque, 1992 ; Toro, 2009 ; Stelling 

and Duinmeijer, 2003 ). Many shock-capturing Godunov-type Fi- 

nite Volume (FV) solvers have been proposed to solve the hydro- 

static NLSWEs during the last three decades ( Alcrudo and Garcıa- 

Navarro, 1993 ; Toro, 2009 ; LeVeque, 1992 ). The fractional step 

methodology provided by the pressure projection/correction meth- 

ods is a suitable approach for developing non-hydrostatic shock- 

capturing NLSWEs models, but only a few non-hydrostatic models 

have the desired shock-capturing capability ( Stelling and Zijlema, 

2003 ). Due to the general complexity and high computational ef- 

fort of the Godunov-type FV methods ( Fang et al., 2014 ; Zijlema 

and Stelling, 2008 ), some authors adopt such schemes for the hy- 

drostatic part of the governing equations and use Finite Difference 

methods to handle the dynamic part ( Fang et al., 2014 ; Ma et al., 

2012 ; Stelling and Zijlema, 2003 ; Zijlema and Stelling, 2008 ). 

Accurate modelling of wetting/drying (WD) processes is another 

basic aspect for flooding or wave run-up simulations. WD tech- 

niques can be classified into Lagrangian and Eulerian approaches 

( Funke et al., 2011 ). In real-case applications, the Eulerian meth- 

ods, which use a fixed mesh, are generally more attractive than the 

Lagrangian methods, which involve interface tracking and mesh 

adaptation to a changing computational domain. The main draw- 

backs of some of the most common WD techniques (e.g., mass im- 

balance at wet/dry interface and computational burden) have been 

addressed in previous studies ( Brocchini et al., 2002 ; Gourgue et 

al., 2009 ; Zijlema and Stelling, 2008 ). 

We present a depth-integrated, non-hydrostatic NLSWEs FV 

model in which the governing equations are written in a conser- 

vative form. The dynamic pressure terms and vertical momentum 

equation account for the dispersion. We solve the governing equa- 

tions by applying a fractional time step procedure, where a hy- 

drostatic problem and a non-hydrostatic problem are sequentially 

solved. The dynamic pressure terms in the momentum equations 

are neglected when solving the hydrostatic problem and are re- 

tained in the non-hydrostatic problem, allowing for adjustment of 

the flow field with respect to the one computed by the hydrostatic 

step. The proposed model is shock-capturing, the WD treatment is 

implicitly embedded, and no additional equation has to be solved 

at the wet/dry interfaces. The model is “well-balanced", indicat- 

ing it preserves both the “water at rest" condition ( Bermudez and 

Vazquez, 1994 ) and a general equilibrium condition with moving 

water (non-zero flow velocity). 

The hydrostatic problem is solved by a prediction-correction 

scheme. We use the MArching in Space and Time (MAST) proce- 

dure ( Aricò and Tucciarelli, 2007a; Aricò et al., 2007, 2013a ) to 

solve the hydrostatic prediction problem. The computational cells 

are sequentially solved throughout the domain after their ordering 

at the beginning of each time iteration. In the corrector step of the 

hydrostatic problem, as well as in the non-hydrostatic problem, we 

solve a large linear system for the unknown water levels and dy- 

namic pressures, respectively. 

Due to their ability to fit arbitrary geometries and irregular nat- 

ural boundaries, the spatial domain is discretized with unstruc- 

tured triangular meshes that satisfy the Delaunay property. 

The paper is organized as follows. We provide motivations for 

the present work in Section 2 . The governing equations are pre- 

sented in Section 3 . In Section 4 , we outline the general formu- 

lation of the proposed numerical procedure. Numerical details of 

the hydrostatic and non-hydrostatic steps, as well as the bound- 

ary conditions, are presented in Section 5 . The model properties 

(e.g., the local and global mass balance, well-balanced property for 

a general condition of moving water at equilibrium, C -property, 

computational burden, convergence order, …) are briefly presented 

and discussed at the end of the same section and in the Appen- 

dices in the file “Appendices-doc" in the supplementary materials. 

Finally, in Section 6 , we present several model applications. These 

applications are aimed at highlighting the capability of the model 

to simulate challenging flooding processes that are widely encoun- 

tered in practical aspects, e.g., dam-break, solitary wave/tsunami 

run-up, wetting/drying and wave breaking over irregular topogra- 

phy. We also validate the model with a new set of lab experiments 

performed at the Hydraulics Laboratory of the Department of Civil 

Engineering of the University of Palermo. 

2. Main motivations of the present work 

The present work builds on a previous paper ( Aricò et al., 2016 ) 

in which the authors proposed a numerical solver for the NL- 

SWEs with a non-hydrostatic pressure distribution. In the verti- 

cal momentum equation, both the vertical advection and dissipa- 

tion terms are neglected so that the non-hydrostatic pressure de- 

pends essentially on the vertical (local) acceleration of the water 

column. Other authors have adopted the same hypothesis ( Lu et 

al., 2015 ; Walters, 2005 ; Wei and Jia, 2013 ; Yamazaki et al., 2008 ; 

Yamazaki et al., 2011 ; Zijlema and Stelling, 2008 ). In Aricò et al. 

(2016 ), a hydrostatic problem and a non-hydrostatic problem are 

sequentially solved in the framework of a fractional time step pro- 

cedure ( Cui et al., 2002 ), which is similar to the present work. 

The authors in Aricò et al. (2016 ) solve the hydrostatic problem 

for the unknown variables water level and horizontal specific flow 

rate components. The vertical momentum equation plays the role 

of a “closure relationship" between the dynamic pressure and ver- 

tical flow rate component in the non-hydrostatic problem, where 

the horizontal and vertical momentum equations are combined in 

the local divergence-free continuity equation ( Aricò et al., 2016 ). In 

the present work, we propose a new mathematical formulation of 

the vertical momentum equation, where the dynamic pressure de- 

pends on both the local acceleration and convective terms. From 

a physical point of view, this means that the weight of the water 

column supported by the adjacent water columns is not negligi- 

ble compared with the vertical acceleration of the water column. 

With respect to the previous work ( Aricò et al., 2016 ), we have one 

additional unknown variable in the hydrostatic problem, which is 

the mean vertical flow rate component, and one additional gov- 

erning equation, which is the vertical momentum equation. The 

numerical solution could benefit from these new vertical convec- 

tive acceleration terms, mainly in strongly nonlinear processes. As 

shown in the next sections, the vertical and horizontal flow rate 

components are combined in the local divergence-free continuity 

equation during the non-hydrostatic step, as in Aricò et al. (2016 ), 

as well as, according to the new approach, during the hydrostatic 

step. In Section 6 , we provide several comparisons between the nu- 

merical solutions obtained with and without the convective verti- 

cal acceleration terms. 
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