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a b s t r a c t 

Surface soil moisture is a critical parameter for understanding the energy flux at the land atmosphere 

boundary. Weather modeling, climate prediction, and remote sensing validation are some of the ap- 

plications for surface soil moisture information. The most common in situ measurement for these 

purposes are sensors that are installed at depths of approximately 5 cm. There are however, sensor tech- 

nologies and network designs that do not provide an estimate at this depth. If soil moisture estimates at 

deeper depths could be extrapolated to the near surface, in situ networks providing estimates at other 

depths would see their values enhanced. Soil moisture sensors from the U.S. Climate Reference Net- 

work (USCRN) were used to generate models of 5 cm soil moisture, with 10 cm soil moisture measure- 

ments and antecedent precipitation as inputs, via machine learning techniques. Validation was conducted 

with the available, in situ , 5 cm resources. It was shown that a 5 cm estimate, which was extrapolated 

from a 10 cm sensor and antecedent local precipitation, produced a root-mean-squared-error (RMSE) of 

0.0215 m 

3 /m 

3 . Next, these machine-learning-generated 5 cm estimates were also compared to AMSR-E es- 

timates at these locations. These results were then compared with the performance of the actual in situ 

readings against the AMSR-E data. The machine learning estimates at 5 cm produced an RMSE of approx- 

imately 0.03 m 

3 /m 

3 when an optimized gain and offset were applied. This is necessary considering the 

performance of AMSR-E in locations characterized by high vegetation water contents, which are present 

across North Carolina. Lastly, the application of this extrapolation technique is applied to the ECONet in 

North Carolina, which provides a 10 cm depth measurement as its shallowest soil moisture estimate. A 

raw RMSE of 0.028 m 

3 /m 

3 was achieved, and with a linear gain and offset applied at each ECONet site, 

an RMSE of 0.013 m 

3 /m 

3 was possible. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

Soil moisture estimates can be obtained by in situ networks and 

by satellite remote sensing. These estimates have been employed 

at a variety of spatial and temporal scales for applications rang- 

ing from droughts ( Sheffield et al., 2004 ) to trafficability for agri- 

cultural decision support ( Coopersmith et al., 2014a ). In hydrologic 

models, subsurface flows at the watershed scale play crucial roles 

in modeling. These flows require soil moisture time series data ( e.g. 
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Grayson et al., 1997 ; Bell et al., 2010 ). Many of these hydrologic 

models are, in turn, utilized by General Circulation Models (GCMs) 

as mechanisms with which to address uncertainty–these require 

inputs of soil moisture ( e.g. Koster and Milly, 1997; Belair et al., 

2005; De Rosnay et al., 2013; Campoy et al., 2013; Joetzjer et al., 

2013 ). These models have also been applied to Department of De- 

fense Applications ( Jones et al., 2010 ). 

These important soil moisture inputs, when retrieved from 

satellites, typically approximate soil moisture at the 5 cm depth. 

These estimates can, in turn, be compared and validated against 

in situ networks where sensors are commonly available at that 

depth. Jackson et al. (2010) compared AMSR-E soil moisture prod- 

ucts to a group of USDA Agricultural Research Service Experimental 
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watersheds, demonstrating soil moisture could be estimated with 

an accuracy of approximately 0.05 m 

3 /m 

3 RMSE. The Soil Mois- 

ture Ocean Salinity Mission (SMOS) was validated with these same 

watersheds and an accuracy of 0.04 m 

3 /m 

3 was achieved ( Jackson 

et al., 2012 ). AMSR-E data were compared against U.S. Climate Ref- 

erence Network (USCRN in Coopersmith et al. (2015a) . However, 

validation programs are currently limited to networks that pro- 

duce 5 cm (or shallower) soil moisture estimates. For instance, the 

ECONet in North Carolina provides soil moisture estimates at the 

10 cm depth as the shallowest measurement. This analysis pro- 

poses a methodology to produce 5 cm estimates from 10 cm in 

situ measurements and antecedent local precipitation, enabling the 

generation of 5 cm in situ products at locations where only 10 cm 

sensors are available. This would be the case for certain networks 

as well as a replacement method for sensor failures as shallow 

depths. 

The methodology will be addressed in three parts. Firstly, a ma- 

chine learning model is developed at local USCRN locations con- 

taining in situ measurements at both the 5 cm and 10 cm depths. 

Models calibrated at 10 cm, in concert with a simple implementa- 

tion of the K-nearest-neighbor algorithm ( Fix and Hodges, 1951 ), 

vertically extrapolate 10 cm estimates to produce 5 cm estimates. 

Validation is conducted using the in situ , 5 cm time series at the 

USCRN locations. 

Secondly, the extrapolated 5 cm estimates will be compared to 

AMSR-E estimates at those locations. By comparing in situ obser- 

vations to AMSR-E and model estimates to AMSR-E side-by-side, 

the amount of error introduced by the extrapolation model can be 

quantified. This will be critical to future work related to deeper 

networks, as knowing error estimates are necessary in any perfor- 

mance metric for a satellite calibration/validation program. 

Lastly, the extrapolation method will be applied to a ‘deep’ net- 

work to compare with a satellite product. North Carolina’s Environ- 

ment and Climate Observing Network (NC ECONet) will be used 

as a test case. ECONet in situ soil moisture sensors are an ideal 

choice for such a test, as they measure soil moisture at 10 cm 

depths across a range of soil types and in a humid environment 

with generally dense vegetation. The extrapolated estimates will be 

compared to the AMSR-E satellite values for appropriate locations. 

These three steps will demonstrate the viability of extrapolating 

soil moisture estimates at the 10 cm depth via machine learning, 

and deploying these results in lieu of in situ measurements at 5 cm 

where such measurements are unavailable. 

2. Methodology 

2.1. The AMSR-E satellite 

The Advanced Microwave Scanning Radiometer – Earth Observ- 

ing System (AMSR-E) satellite, is a passive-microwave radiometer 

system measuring polarized brightness temperatures from which 

soil moisture estimates are inferred at approximately 60 km res- 

olution. These C-band observations represent estimates at the top 

∼1 cm of depth and are delivered via the NASA algorithm, available 

from www.nsidc.org . AMSR-E delivered such estimates between 

2002 and 2011. It is important to note that although USCRN’s in- 

stallation sites were selected to minimize the impacts of anthro- 

pogenic interference, spatial heterogeneity of land-cover, soil tex- 

ture, and topography, may impact the representativeness of the 

USCRN point estimates to the AMSR-E spatial estimate to which 

it is compared in Coopersmith et al. (2015c) and as an application 

later in this manuscript, when ECONet site estimates are compared 

with AMSR-E values. 

Though AMSR-E produces estimates at the top 1 cm depth, to 

retain robustness of installations, national in situ networks for soil 

moisture ( e.g. USCRN, SCAN) place their shallowest sensors at the 

5 cm depth. Thus, though a model could be developed for a 1cm- 

depth estimate, there would be no in situ record against which to 

validate it. The seminal work for AMSR-E ( Jackson et al., 2010 ) ad- 

dresses this in greater detail. As the focus of the current paper is 

5 cm in situ estimation rather than AMSR-E, the chosen depth for 

analysis will be 5 cm. 

2.2. The diagnostic soil moisture equation 

At each of these 1075 profiles, the six parameters of the diag- 

nostic soil moisture equation have been calibrated via genetic al- 

gorithm. The diagnostic soil moisture equation is presented below 

in Eq. 1 . 

θest = θre + ( φe − θre ) 
(
1 − e −c 4 β

)
(1) 

In Eq. 1 , in calculating our soil moisture estimate, θ est , we 

utilized three parameters. The first, θ re , denotes the residual soil 

moisture – a value below which soil moisture levels will not fall 

even after a prolonged absence of rainfall. Though similar to “wilt- 

ing point,” residual soil moisture represents a hard minimum value 

for the model, often calibrated as the lowest value a given sen- 

sor can record. The second, ϕ e , signifies the porosity of the soil, 

the maximum soil moisture at saturation. The third, c 4 , describes 

the soil’s rate of drainage. Note that a high value implies soil that 

drains extremely slowly, and a low value implies a soil that drains 

rapidly. Finally, the β value describes the convolution of an an- 

tecedent precipitation time series – it is presented in Eq. 2 . 

β = 

i = n −1 ∑ 

i =2 

[ 

P i 
ηi 

(
1 − e −

ηi 
z 

)
e 

−
j= i −1 ∑ 

j=1 

(
η j 
z 

)] 

+ 

P 1 
η1 

(
1 − e −

η1 
z 

)
(2) 

Eq. 2 presents the calculation of the β-series at depth z , us- 

ing precipitation values at previous time stamps (the values of P i ). 

The values of ηi represent the losses due to evapotranspiration and 

deep drainage – this η-series is assumed to be sinusoidal. The re- 

maining three parameters define that sinusoid – amplitude, hor- 

izontal shift, and vertical shift (the period is fixed at one year). 

Additional descriptions of the model can be found in Pan et al. 

(2003) and Pan (2012) . Further description of its calibration are 

found) in Coopersmith et al. (2014b) . 

2.3. Model approach: the K-Nearest-Neighbor algorithm 

As this study assumes that there are no 5 cm data available, the 

diagnostic soil moisture equation cannot be used directly. How- 

ever, the models that are calibrated at the 10 cm depth still pro- 

vide some insights via the use of the K-Nearest-Neighbors algo- 

rithm (KNN). KNN is a simple machine learning algorithm that has 

been deployed in a number of hydrological contexts ( e.g. , Kumar 

et al., 2006, Meliker et al., 2008, McRoberts et al., 2007 ; Nemes et 

al., 2008 , and Coopersmith et al., 2011 ). KNN is an intuitively sat- 

isfying approach for classification, analysis, and forecasting. The al- 

gorithm employs current features to locate the most similar exam- 

ples from historical data (where 5 cm values are actually known) 

and, in turn, utilizes those similar examples to estimate the 5 cm 

soil moisture values where those values are unavailable. 

Similarity is determined via a simple Euclidian distance func- 

tion in attribute space. Consider a hypothetical input vector as 

shown in Eq. 3 : 

X = ( x 1 , x 2 , x 3 , . . . , x n ) (3) 

As each independent variable’s distribution may occur on 

widely different numerical scales, normalization occurs by 

transforming each non-normalized variable, z i as shown in 

Eq. 4 . 

x i = 

z i − μi 

σi 

(4) 

http://www.nsidc.org


Download English Version:

https://daneshyari.com/en/article/4525224

Download Persian Version:

https://daneshyari.com/article/4525224

Daneshyari.com

https://daneshyari.com/en/article/4525224
https://daneshyari.com/article/4525224
https://daneshyari.com

