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a b s t r a c t 

A two-sided fractional conservation of mass equation is derived by using left and right fractional 

Mean Value Theorems. This equation extends the one-sided fractional conservation of mass equation of 

Wheatcraft and Meerschaert. Also, a two-sided fractional advection-dispersion equation is derived. The 

derivations are based on Caputo fractional derivatives. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

Spatial and temporal fractional-order differential equations have 

practical application in the modeling of hydrologic processes such 

as solute transport in surface water [12] and groundwater [1] . Spa- 

tially fractional equations can model rapid solute transport while 

temporally fractional equations can model delays in transport [8] . 

Various approaches have been taken for selecting the fractional 

governing equations for hydrologic processes. Fractional constitu- 

tive laws [2] , probabilistic derivations [14] and fractional conserva- 

tion laws [16] have been used. [17] discuss the various forms that 

the fractional advection-dispersion equation can take. Definitions 

and properties of fractional derivatives can be found in the works 

of [6] and [11] . 

[16] derived a fractional conservation of mass equation using 

the left fractional Taylor series of [10] . This conservation equation 

involves left local Caputo fractional derivatives and the equation is 

derived in a manner analogous to the derivation of the differential 

form of the classical conservation of mass equation. More recently, 

[9] used the same approach to derive a fractional Boussinesq equa- 

tion. 

A derivation of a fractional advection-dispersion equation using 

a different fractional Taylor series was presented in [13] . The series 

was based on a Riemann–Liouville fractional derivative. The series 

was used to derive a fractional Fick’s Law. This fractional Fick’s Law 
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was used with a classical conservation of mass equation to derive 

a fractional advection-dispersion equation. 

In this work, we use fractional mean value theorems to derive a 

two-sided fractional conservation of mass equation involving both 

left and right Caputo fractional derivatives. In Section 2 we dis- 

cuss the fractional mean value theorems. In Section 3 we derive a 

two-sided conservation of mass equation. We show how the result 

obtained in [16] is related to the construction presented here. In 

Section 4 we obtain the corresponding advection-dispersion equa- 

tion. We finish the paper with conclusions in Section 5 . 

2. Fractional mean value theorems 

The left and right Caputo fractional derivatives [6] of orders α
> 0 and β > 0 of a function f can be defined by 

( L D 

α
a f )(x ) = 

1 

�(m − α) 

∫ x 

a 

f (m ) ( u ) 

( x − u ) α−m +1 
du (1) 

and 

( R D 

β
b 

f )(x ) = 

(−1) m 

�(m − β) 

∫ b 

x 

f (m ) ( u ) 

( u − x ) β−m +1 
du, (2) 

where m − 1 < α ≤ m and m − 1 < β ≤ m for some positive integer 

m . The positions of the point of evaluation, x , and the endpoints of 

the interval are shown in Fig. 1 . 

[4] derived the following Mean Value Theorem for left Caputo 

fractional derivatives. For 0 < α ≤ 1, f ∈ C [ a, b ] and 

L D 

α
a f ∈ C[ a, b] , 

there exists ξ ∈ ( a, b ) such that 

f (b) = f (a ) + 

( L D 

α
a f )(ξ ) 

�(α + 1) 
(b − a ) α. (3) 
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a x b

Fig. 1. The left fractional derivative of a function depends on points from a left 

endpoint a up to the point of evaluation x . The right fractional derivative depends 

on points from x up to a right endpoint b . 

a ξ b

Fig. 2. The left fractional Mean Value Theorem shows that a function value at the 

right endpoint of an interval can be written in terms of the function value at the 

left endpoint a and L D αa f at some unspecified point ξ in ( a, b ). 

a θ b

Fig. 3. The right fractional Mean Value Theorem shows that the function value at 

the left endpoint of an interval can be written in terms of the function value at the 

right endpoint b and R D 
β
b 

f at an unspecified point θ in ( a, b ). 

Fig. 4. The left fractional Mean Value Theorem allows f (x + �x / 2) to be written in 

terms of f ( x ) and the left fractional derivative of f at ξ . 

Fig. 5. The right fractional Mean Value Theorem allows f (x − �x / 2) to be written 

in terms of f ( x ) and the right fractional derivative of f at θ . 

Fig. 2 shows, by using the left Mean Value Theorem, that a 

function value at a point b depends on the function value at a 

point a and the left-fractional derivative of the function at some 

point ξ ∈ ( a, b ). The left fractional derivative of f at ξ is computed 

using points from a to ξ . 

By analogy with the results for the left Caputo fractional deriva- 

tive given in [4] , similar results can be obtained for right Caputo 

fractional derivatives. This Mean Value Theorem for right Caputo 

fractional derivatives states that when 0 < β ≤ 1, f ∈ C [ a, b ] and 

R D 

β
b 

f ∈ C[ a, b] , there exists θ ∈ ( a, b ) such that 

f (a ) = f (b) + 

( R D 

β
b 

f )(θ ) 

�(β + 1) 
(b − a ) β . (4) 

Fig. 3 shows, by using the right Mean Value Theorem, that a 

function value at a point a depends on the function value at a 

point b and the right-fractional derivative of the function at some 

point θ ∈ ( a, b ). The right fractional derivative of f at θ is computed 

using points from θ to b . 

Now consider the interval [ x − �x / 2 , x + �x / 2] . If we take a = 

x and b = x + �x / 2 in (3) and a = x − �x / 2 and b = x in (4) , we 

obtain 

f (x + �x / 2) = f (x ) + 

( L D 

α
x f )(ξ ) 

�(α + 1) 
( �x / 2) α (5) 

and 

f (x − �x / 2) = f (x ) + 

( R D 

β
x f )(θ ) 

�(β + 1) 
( �x / 2) β . (6) 

When the left and right Mean Value Theorems are used, Figs. 4 

and 5 show the points on which f (x + �x / 2) and f (x − �x / 2) de- 

pend. 

Eqs. (5) and (6) are exact. We will also use approximate forms 

of these equations. Indeed, these fractional mean-value equations 

can be written in approximate form by letting ξ and θ equal the 

right and left endpoints of the interval, respectively 

f (x + �x / 2) ≈ f (x ) + 

( L D 

α
x f )(x + �x / 2) 

�( α + 1) 
( �x / 2) α (7) 

Fig. 6. Diagram of the control volume �V . 

and 

f (x − �x / 2) ≈ f (x ) + 

( R D 

β
x f )(x − �x / 2) 

�( β + 1) 
( �x / 2) β . (8) 

The fractional mean-value equations (5) and (6) can also be 

written in approximate form by letting ξ and θ approach the cen- 

ter, x , of the interval if fewer conditions on the smoothness of f 

are assumed. In this case, the derivatives in these equations will 

be local fractional derivatives: 

f (x + �x / 2) ≈ f (x ) + 

( L D 

α
x f )(x +) 

�(α + 1) 
( �x / 2) α (9) 

and 

f (x − �x / 2) ≈ f (x ) + 

( R D 

β
x f )(x −) 

�(β + 1) 
( �x / 2) β . (10) 

The + and − in (9) and (10) denote the limits as the points at 

which the fractional derivatives are evaluated approach the center 

of the interval, x , from the right and left. In the Appendix, local 

fractional Taylor series are discussed since Eqs. (9) and (10) can 

also be obtained by truncating the fractional Taylor series after the 

second terms. Local left Caputo fractional derivatives appear in the 

fractional conservation of mass equation in [16] and in the deriva- 

tion of the fractional Boussinesq equation in [9] . 

In Section 3 we use the fractional mean value theorems (5) and 

(6) and the approximations (7) and (8) to derive two-sided frac- 

tional conservation of mass equations. 

3. Derivation of a two-sided conservation of mass equation 

Now that the fractional mean value theorems have been de- 

scribed, we use them to derive a two-sided fractional conservation 

of mass equation. Consider in Fig. 6 the control volume �V , not 

necessarily infinitesimal in volume, with center at ( x 1 , x 2 , x 3 ). We 

first describe the temporal rate of change of mass in �V in the x 1 
direction. The resulting expression is later extended to the x 2 and 

x 3 directions. 

Let F 1 (x 1 − �x 1 / 2 , x 2 , x 3 , t) and F 1 (x 1 + �x 1 / 2 , x 2 , x 3 , t) denote 

the components of the mass flux passing through the faces of �V 

at locations x 1 − �x 1 / 2 and x 1 + �x 1 / 2 , respectively, in the x 1 di- 

rection. The temporal rate of change of mass in �V in the x 1 di- 

rection is then 

F 1 (x 1 − �x 1 / 2 , x 2 , x 3 , t) A x 1 −�x 1 / 2 − F 1 (x 1 + �x 1 / 2 , x 2 , x 3 , t) A x 1 +�x 1 / 2 , 

(11) 

where A x 1 −�x 1 / 2 
and A x 1 +�x 1 / 2 

are the areas of the control volume 

faces perpendicular to the flux at locations x 1 − �x 1 / 2 and x 1 + 

�x 1 / 2 . 

We now use the exact fractional mean value theorems (5) and 

(6) to rewrite the flux factors F 1 at points (x 1 − �x 1 / 2 , x 2 , x 3 ) and 

(x 1 + �x 1 / 2 , x 2 , x 3 ) . The values of F 1 at the faces depend on the 
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