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a b s t r a c t 

The one-dimensional consolidation model of poroelasticity of Lo et al. (2014) for an unsaturated soil 

under constant loading is generalized to include an arbitrary time-dependent loading. A closed-form so- 

lution for the pore water and air pressures along with the total settlement is derived by employing a 

Fourier series representation in the spatial domain and a Laplace transformation in the time domain. This 

solution is illustrated for the important example of a fully-permeable soil cylinder with an undrained ini- 

tial condition acted upon by a periodic stress. Our results indicate that, in terms of a dimensionless time 

scale, the transient solution decays to zero most slowly in a water-saturated soil, whereas for an unsat- 

urated soil, the time for the transient solution to die out is inversely proportional to the initial water 

saturation. The generalization presented here shows that the diffusion time scale for pore water in an 

unsaturated soil is orders of magnitude greater than that in a water-saturated soil, mainly because of the 

much smaller hydraulic conductivity of the former. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

In nature, cyclic loading of porous media occurs in a variety of 

engineering applications, such as water level variations in seafloor 

sediments induced by tides [28] , moving loads on pavement sur- 

faces causing dynamic stress oscillations in the subgrade [20] , and 

water pressure changes in a reservoir behind an earthen dam due 

to earthquakes [22] . Schiffman [23] seems to have been the first to 

derive a mathematical solution for the problem of saturated clayey 

soil consolidation under the action of a time-dependent load. Using 

the principle of superposition to combine the solutions obtained 

from Terzaghi’s one-dimensional consolidation theory [24] for dif- 

ferent cycling periods, Balight and Levadoux [1] presented an an- 

alytical solution of excess pore pressure and total settlement for 

a saturated clay layer subject to cyclic square loading. A general 

solution technique was proposed by Conte and Troncone [5] for 

the one-dimensional consolidation of a semi-permeable saturated 

soil under periodic loading after representing it as an infinite sum 

of sine and cosine wave components. Kameo et al. [10] extended 

Mandel’s problem [26,27] to uniaxial cyclic loading, then applied 
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the Laplace transform to derive a complete solution for the pore 

fluid pressure in a saturated poroelastic material [2] . 

In contrast to the theoretical development advanced for a satu- 

rated porous medium, scant attention has been paid to poroelastic 

coupling among two immiscible fluids (e.g., water and air) and the 

solid skeleton in an unsaturated porous medium. Fredlund and his 

co-workers [7,8] integrated the equations of continuity to derive 

constitutive equations linking stress to volume change in order to 

construct two coupled equations for the dissipation of pore water 

and air pressures under a constant external compressive load. 

Introducing a potential function that bears a linear relationship 

to the pore water and air pressures, Zhou et al. [29] solved the 

extended form of these equations for constant, ramped, and expo- 

nential time-dependent loading. An analytical solution was given 

by Ho and Fatahi [9] for the problem of two-dimensional plane 

consolidation employing eigenfunction expansions. In these studies 

or other related works undertaken to develop analytical solutions 

to similar problems [e.g. 6,19 ], the initial values for the pore 

water and air pressures were not state-dependent (e.g., on water 

saturation and porosity) parameters, but instead were constants to 

be determined experimentally. More recently, Lo et al. [16] applied 

the theory of poroelasticity to formulate exact expressions for an- 

alyzing consolidation in unsaturated soils subject to time-invariant 

loading. Their model provides a comprehensive theoretical 
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framework for describing the spatial and temporal evolution 

of solid matrix displacement, pore water pressure, and pore air 

pressure with well-defined initial values. Lo and Lee [17] have 

conducted a numerical study to examine variations in pore water 

pressure and total settlement as influenced by soil texture and 

water saturation. 

Despite these advances, we do not yet have a closed-form ana- 

lytical solution that describes exactly how each phase in a poroe- 

lastic medium should respond to periodic stress changes, while 

being rooted in a thermodynamically-consistent model which al- 

lows full coupling of the solid deformation to interstitial fluid 

flows. In this paper, a set of macroscopic coupled partial differ- 

ential equations is developed based on the theory of poroelas- 

ticity [2,4,12,14,15] to describe one-dimensional consolidation in 

a partially-saturated porous medium under time-varying loading. 

Our equations generalize the earlier work of Lo et al. [16] . When 

specialized to a porous medium containing a single fluid and an 

elastic solid, they reduce to the well-known Biot [2] model of one- 

dimensional consolidation under cyclic vertical loading [26,27] . 

Using a Fourier series representation in the space domain [e.g. 

Eqs. (6) ] and the Laplace transformation in the time domain [e.g. 

Eqs. (10) ], a boundary-value problem involving our coupled model 

equations subject to periodic stress loading is reduced to two cou- 

pled nonhomogeneous ordinary differential equations which cor- 

respond physically to the forced vibrations of a system of coupled 

oscillators under viscous damping. A closed-form analytical solu- 

tion that contains transient and steady-state components then is 

derived accounting for the spatial and temporal variations in pore 

water and air pressures in response to a harmonic stress excitation. 

This solution is illustrated through prototypical numerical simula- 

tions of pore water pressure and total settlement. 

2. Model equations 

We begin with an extended form of the coupled partial dif- 

ferential equations governing one-dimensional consolidation of an 

unsaturated soil, in the absence of body forces, derived by Lo et al. 

[16] : 

q 1 
∂ p 1 
∂t 

+ q 2 
∂ p 2 
∂t 

= b 1 
∂ 2 p 1 
∂ z 2 

+ r 1 
∂ f (t) 

∂t 
, (1.1) 

q 3 
∂ p 1 
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+ q 4 
∂ p 2 
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= b 2 
∂ 2 p 2 
∂ z 2 

+ r 2 
∂ f (t) 

∂t 
, (1.2) 

where the coefficients q 1 , q 2 , q 3 , q 4 , b 1 , b 2 , and f ( t ) are defined by 
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In Eqs. (1) and (2) , p ξ and θξ designate incremental gauge 

(or excess) pressure and volume fraction for the fluid phase ξ

( ξ = 1 , 2 ), respectively, the subscript ξ referring to a non-wetting 

fluid ( ξ = 1, henceforth termed “air”) and a wetting fluid ( ξ = 2, 

henceforth termed “water”); S ξ = 

θξ

φ
denotes the relative satura- 

tion of phase ξ , φ being porosity; ηξ and k r ξ signify its dynamic 

shear viscosity and relative permeability, respectively; k s expresses 

the intrinsic permeability of the porous soil framework; K b and G 

represent its bulk and shear moduli, respectively; α = 1 − K b 
K s 

is the 

Biot–Willis coefficient [3,27] , also known as the effective stress co- 

efficient [11,27] , K s being the bulk modulus of the solid phase; and 

a 22 , a 23 , and a 33 are linear elasticity coefficients related to directly- 

measurable soil properties [12,15] , as summarized in Appendix A . 

We note in passing that in the classic consolidation problem for 

a fluid-containing porous medium subject to a periodic external 

force [26,27] , the loading period is typically assumed to be much 

longer than the time for elastic wave propagation. Accordingly, in- 

ertial terms are negligible and the quasaistatic approximation of 

mechanical equilibrium in Eq. (1) remains accurate [26,27] . 

Eqs. (1) follow in a straightforward manner from extending 

Eq. (14) in Lo et al. [16] to permit a time-varying total compaction 

stress f ( t ) instead of the time-invariant stress p ∗ they considered. 

Thus, their Eq. (14a), which represents the static equilibrium of the 

total stress for a three-phase system, is here extended to have the 

form (with the sign convention that compression is negative): (
K b + 

4 

3 

G 

)
∂w 

∂z 
− S 1 αp 1 − S 2 αp 2 = − f (t) , (3) 

where w denotes a component of the displacement vector of the 

solid phase along the vertical ( z ) direction. 

The physical basis of Eqs. (1) and (3) in poroelasticity theory 

has been discussed extensively by Lo et al. [16] . Mathematically, 

Eq. (1) represents two coupled nonhomogeneous diffusion equa- 

tions, with the coupling occurring only in the time-derivatives. It 

provides a complete analytical description of one-dimensional con- 

solidation in unsaturated soil under a cyclic load, with dependent 

variables p 1 and p 2 . The coefficient matrix for the time-derivatives 

of p 1 and p 2 on the left side of Eq. (1) is symmetric. The hy- 

draulic diffusivities [27] or consolidation coefficients [26] , ˜ c v = 

b 1 
q 1 

and c v = 

b 2 
q 4 

for air and water, respectively, defined in terms of the 

relative mobilities b i ( i = 1, 2) in Eqs. (2.4) and ( 2.5 ) and the diago- 

nal elements of this matrix, are crucial parameters underlying the 

dissipation of excess pore fluid pressure [17] . 

In Eq. (3) , consider a sinusoidal total compaction stress with an- 

gular excitation frequency ω 
2 acting on the soil (compare Eq. (2.90) 

in [26] ) such that a vertical surface load is applied at t = 0 which 

exerts solely a compressive force, i.e., f (t) = p ∗cos 2 ( ωt 
2 ) . Eq. (1) 

reduces to Eq. (16) (and Eq. (3) reduces to Eq. (14a)) in Lo et al. 

[16] if ω = 0 . If the non-wetting fluid is absent, Eq. (1) reduces to 

the Biot model [2] of one-dimensional consolidation in a water- 

saturated porous medium under periodic vertical loading [26,27] , 

as demonstrated in Appendix B . 

3. Analytical solutions 

We shall develop an analytical solution of the coupled diffusion 

equations in Eq. (1) for a homogeneous soil layer under the bound- 

ary conditions that the top ( z = h ) and bottom ( z = 0 ) surfaces are 

fully permeable with respect to both air and water (see Fig. 1 ); i.e. 

p 1 (0 , t) = p 2 (0 , t) = 0 , (4.1) 

p 1 (h, t) = p 2 (h, t) = 0 . (4.2) 

An instantaneous undrained response (no change in air or water 

content) occurs throughout the soil layer when the surface stress 
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