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a b s t r a c t

The paper aims to develop researches on the spatial variability of heavy rainfall events estimation using spa-

tial copula analysis. To demonstrate the methodology, short time resolution rainfall time series from Stuttgart

region are analyzed. They are constituted by rainfall observations on continuous 30 min time scale recorded

over a network composed by 17 raingages for the period July 1989–July 2004. The analysis is performed ag-

gregating the observations from 30 min up to 24 h. Two parametric bivariate extreme copula models, the

Husler–Reiss model and the Gumbel model are investigated. Both involve a single parameter to be estimated.

Thus, model fitting is operated for every pair of stations for a giving time resolution. A rainfall threshold

value representing a fixed rainfall quantile is adopted for model inference. Generalized maximum pseudo-

likelihood estimation is adopted with censoring by analogy with methods of univariate estimation combin-

ing historical and paleoflood information with systematic data. Only pairs of observations greater than the

threshold are assumed as systematic data. Using the estimated copula parameter, a synthetic copula field

is randomly generated and helps evaluating model adequacy which is achieved using Kolmogorov Smirnov

distance test. In order to assess dependence or independence in the upper tail, the extremal coefficient which

characterises the tail of the joint bivariate distribution is adopted. Hence, the extremal coefficient is reported

as a function of the interdistance between stations. If it is less than 1.7, stations are interpreted as depen-

dent in the extremes. The analysis of the fitted extremal coefficients with respect to stations inter distance

highlights two regimes with different dependence structures: a short spatial extent regime linked to short

duration intervals (from 30 min to 6 h) with an extent of about 8 km and a large spatial extent regime related

to longer rainfall intervals (from 12 h to 24 h) with an extent of 34 to 38 km.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The risk assessment of heavy rainfall for short time scales is quite

important for flood risk and erosion risk evaluation, as well for the

estimation of economic damages resulting from rainfall excess.

Because rainfall patterns are well organized structures in space

and time, we need to adopt appropriate statistical methods that take

into account the concomitant occurrence of rainfall in different ge-

ographic locations. Spatial variability assessment of environmental

data is commonly based on the identification of the variogram func-

tion (Matheron [17]) which represents the mean quadratic devia-

tion in a random field (here rainfall). However the assessment of

rainfall spatial dependence attached to heavy rainfall events needs

more specific approaches because variogram analysis is sensitive to

outlying observations and assumes that the marginal distribution of
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the underlying random field is Normal. The hypothesis of normal-

ity is far of being realistic in the case of rainfall patterns for that the

Gaussian type of dependence underestimates the dependence of ex-

tremes. Smith [21] proposed multivariate Student t-transformation

as extreme value process. Yet, in the geostatistical approaches, the

madogram which represents the mean absolute deviation in the ran-

dom field has been suggested by Cooley [6] and Cooley et al. [7] in-

stead of the variogram when studying the spatial dependence of ex-

tremes because it “conveniently links geostatistical ideas to measures

of dependence for extremes”. In effect, it is related to the extremal co-

efficient, which characterizes dependence between extremes, as out-

lined by Gillou et al. [11]. It is worth noting that as a geostatistical

tool, the madogram was proposed by Matheron [18] in linkage with

the variogram of indicator variables.

Copula approaches have been recently investigated as alternative

to analyze and interpolate environmental data spatial patterns. Cop-

ula is defined as a multivariate distribution function with marginal

distributions uniforms on (0,1). Compared to more classical bivari-

ate density approach, one great advantage in bivariate copula is that
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transformation of the random variable (here precipitation) does not

change the copula. Also, as pointed out by De Michele and Salvadori

[9] and Zhang and Singh [24] in their respective studies of rainfall in-

tensity, depth and duration relationships, there is no need to assume

that variables have the same marginal distributions with Copula ap-

proach while such an assumption is needed in order to simplify the

computations in bivariate of trivariate analysis. . Because of the above

cited merits of Copula approaches, bivariate copula was adopted by

Cooley [6] in the domain of environmental data, to analyze air tem-

perature data, as alternative to madogram analysis. Also, multivari-

ate Chi-square copula was investigated by Bardossy [2] in analyzing

groundwater quality data. Moreover, spatial interpolation based on

Copula was proposed by Bardossy and Li [3] for groundwater quality

parameters. Recently, Wasco et al. [23] used copula for spatial inter-

polation of rainfall data at the daily scale. What is particularly chal-

lenged is whether the high values of rainfall have a stronger depen-

dence or the same dependence in comparison to the low values. In

this perspective, Bardossy and Pegram [4] proposed a multidimen-

sional copula model to simulate multi-site daily rainfall data and put

into evidence the difference in dependence structure between zones

of high and low rainfall. Wasco et al. [23] also adopted two-level ap-

proach: local and global estimations to improve rainfall estimation at

non observed sites.

In Gaussian copula, the dependence structure (which is symmet-

rical) is carried out by the coefficient of correlation which acts as cop-

ula parameter.

Asymmetric bivariate copulas are more likely to represent spa-

tial heavy rainfall structures or how does the correlation function

varies with the interdistance. Thus, asymmetric spatial copula mod-

els have been constructed from the Gaussian copula using transfor-

mations such as the Chi-square distribution ([2]. However, Kazienka

and Pilz [16] pointed out that the Chi-square copula is not appropri-

ate to model extremes because it is asymptotically independent in

the range of variation of the correlation coefficient. Thus, the paper

aims to investigate other copulas belonging to extreme copula mod-

els in order to make an efficient estimation of the tail of the spatial

extreme rainfall distribution and to investigate the spatial extent of

extremes.

In the following, the paper presents in the next section the data

available for the study as well as a first description of their spatial

variability related to extreme rainfall values. Then, we present in

Section 3 the methodology which mainly focuses on the method of

generalized pseudo likelihood estimation to infer extreme copula pa-

rameters. Finally results are interpreted and discussed in Section 4 in

the light of spatial extension of rainfall extreme patterns in linkage

with the time resolution.

2. Data

Data are from the Stuttgart (Germany) region. The average an-

nual temperature is 9.3 °C and the average mean annual precipita-

tion is 674 mm. The climate is classified as warm and temperate

(http://en.climate-data.org/). Fig. 1 shows the stations geographical

locations. Available time series are 30-min time step observations of

rainfall for the period July 1989- July 2004. Time series of 17 rain-

fall stations are analyzed. Series contain some gaps. After identifying

gaps, the 30-min series were aggregated to the following time reso-

lutions � = 30 mn, 60 mn, 3 h, 6 h, 8 h, 10 h, 12 h, 15 h, 18 h and

24 h. If for a given �, the interval contains a gap at 30min time res-

olution, this interval is removed from the time series corresponding

to �. Thus, because of the presence of gaps, time series related to a

given � have different sample sizes.

The probability of occurrence of zero is high. In the present case, it

is around 0.78 for � = 30 min, meaning that 78% of time intervals are

not rainy. Conversely, a rainfall of 10 mm in 30 min has a probability

0.9999 of being exceeded.

Fig. 1. The studied rainfall network; rainfall stations are in red. (For interpretation of

the references to colour in this figure legend, the reader is referred to the web version

of this article).

Many definitions are provided in the literature concerning the

statement of heavy rainfall. It may correspond to 25 up to 60 mm/day.

However, rainfall thresholds are generally associated with the time

resolution �. Thus, it is found more appropriate to transform rainfall

observations to unit less variables. To this end, in each station, ob-

servations are ranked and transformed using the sample cumulative

distribution according to the Weibull formula ui = rank(x i,�)/(N0+1)

where xi,� (i = 1,N0) is rainfall observation at time ti for timescale �,

rank(xi,�) is the rank of the observation (x i,�) when observations are

sorted and N0 is the sample size. Thus, u is a uniform random variable.

Carlton et al. [5] adopted the 90th percentile per 24 h to define

heavy rainfall events to investigate their effect on diarrhea in Ecuador.

Here, independently from �, we considered the threshold u0 = 0.95

for characterizing high rainfall values. We assumed that rare events

correspond to u0 ≥ 0.99.

In the bivariate case, we consider two stations with two series xi

and yi transformed to unit less uniform random variables ui and vi.

The problem of interest is the concomitant occurrence of extremes

in the two locations, for when extremes are reported in many loca-

tions, the flood risk is amplified.

Thus, it is important to estimate the joint probability of occur-

rence Prob(U = u,V = v), the copula itself which is C(u,v) = Prob

(U ≤ u,V ≤ v) as well as the conditional probability of occurrence

Prob(U > u|V > v). To that purpose, it is helpful to adjust a parametric

model of the Copula.

Stations geographical locations are provided in the coordinate’s

system projection of Gauss–Krueger. Euclidean distance is adopted.

Fig. 2 reports rainfall scatter plot corresponding to � =30 mn for two

stations (number 1 and 2) separated by an inter distance of about

20 km. The plot reports (ui, vi) such as ui ≥ 0.95 and or vi ≥ 0.95; each

square corresponds to a pair (ui, vi). Despite the importance of inter-

distance, the plot highlights the simultaneous occurrence of extremes

(many realizations are reported for ui and vi ≥ 0.95). However, it may

be seen from the plot that it often happens that one station records

an extreme while the other station does not (realizations where we

have ui or vi ≥ 0.95 but not for both).

Now, consider four subsets:

- S0: ui < u0 and vi < v0;

- S1: ui > u0 and vi < v0;
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