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a b s t r a c t

The Ensemble Kalman Filter (EnKF) has been commonly used to assimilate real time dynamic data into ge-

ologic models over the past decade. Despite its various advantages such as computational efficiency and its

capability to handle multiple sources of uncertainty, the EnKF may not be used to reliably update models

that are characterized by curvilinear geometries such as fluvial deposits where the permeable channels play

a crucial role in the prediction of solute transport. It is well-known that the EnKF performs optimally for

updating multi-Gaussian distributed fields, basically because it uses two-point statistics (i.e., covariances) to

represent the relationship between the model parameters and between the model parameters and the ob-

served response, and this is the only statistic necessary to fully characterize a multiGaussian distribution. The

Ensemble PATtern matching (EnPAT) is an alternative ensemble based method that shows significant poten-

tial to condition complex geology such as channelized aquifers to dynamic data. The EnPAT is an evolution

of the EnKF, replacing, in the analysis step, two-point statistics with multiple-point statistics. The advantages

of EnPAT reside in its capability to honor the complex spatial connectivity of geologic structures as well as

the measured static and dynamic data. In this work, the performance of the classical EnKF and the EnPAT

are compared for modeling a synthetic channelized aquifer. The results reveal that the EnPAT yields a better

prediction of transport characteristics than the EnKF because it characterizes the conductivity heterogeneity

better. Issues such as uncertainty of multiple variables and the effect of measurement errors on EnPAT results

will be discussed.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Inverse methods have been used extensively in hydrology and

petroleum engineering to identify spatial variations of geological

parameters conditioned to observed dynamic data such as piezo-

metric head and concentration, in order to improve flow and

transport predictions. Inverse methods have evolved from manual

trial-and-error approaches to real-time automatic data assimilation

approaches; from deterministic estimation to stochastic simulation;

from gradient-based minimization approaches to sampling-based

approaches; and from multiGaussian-based methods to those with-

out restrictive multiGaussian assumptions. An extensive description

of the evolution of inverse methods and recent trends can be found

in the work by Zhou et al. [53].
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The widely used ensemble Kalman filter (EnKF), an ensemble-

based real-time data assimilation inverse method, was first proposed

by Evensen [8] as an extension of the extended Kalman filter. In the

EnKF, the cross-correlations of the parameters and the state variables

are explicitly calculated through an ensemble of realizations rather

than approximated through a Taylor series expansion of the transfer

function [e.g., 24]. The ensemble Kalman filter has increasingly been

used in multiple disciplines such as petroleum engineering and hy-

drogeology because of its computational efficiency and its real-time

data assimilation capability [e.g., 2,4,6,10,17,20,28,34,35–37,47]. For

instance, Chen and Zhang [6] applied standard EnKF to a groundwa-

ter system in order to evaluate the sensitivity of inverted/updated

parameters to factors such as ensemble size and frequency of condi-

tioning data. Hendricks Franssen and Kinzelbach [20] applied EnKF to

a field case study and discussed the filter inbreeding issue in detail.

Panzeri et al. [35] coupled EnKF with moment equations to circum-

vent the computational cost needed in the Monte Carlo simulations,

and applied this novel approach in a real case study [37]. Gharamti
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et al. [12] proposed a hybrid formulation of the EnKF and optimal

interpolation that integrates both the ensemble sample covariance

and a static background covariance in order to reduce the size of the

ensemble and to avoid filter divergence. Panzeri et al. [34] developed

a two-step updating scheme to integrate dynamic data into reservoir

models exhibiting complex geology; specifically, the geometry of

facies is first handled using a Markov mesh model, and then the EnKF

is applied to calibrate the conductivities within each facies.

In fluvial depositions and fractured systems, hydraulic conductiv-

ity is commonly assumed to follow a multi-modal probability dis-

tribution. In other words, spatial variation in conductivity can be

thought of as an outcome from several random processes that char-

acterize the geo-material (i.e., facies). Winter et al. [50] and Win-

ter et al. [49] discussed this type of “composite medium” in de-

tail, and, for example, Guadagnini et al. [18] and Riva et al. [39]

have applied this concept for aquifer modeling. Multiple-point statis-

tics (MPS) methods are becoming popular for characterizing fluvial

depositions and fractured aquifers. MPS uses (only) the observed

static data (i.e., measured conductivity data) for conditioning geo-

logic models. Compared to traditional two-point covariance-based

geostatistical methods, MPS has the capability to effectively repro-

duce complex structures observed in a conceptual model (i.e., train-

ing image). Several MPS algorithms have been described in the liter-

ature since SNESIM, the first MPS code, was developed by Strebelle

[44]. Hu and Chugunova [21] presented a comprehensive review of

MPS methods.

The challenge is to integrate dynamic data into the MPS-based

geological modeling procedures. More specifically, the key question

is how to condition non-multiGaussian fields to dynamic data that

are related to the model parameters through highly non-linear re-

lationships. Recently, a number of authors have tried to apply the

EnKF to an ensemble of MPS-based non-multi-Gaussian conductiv-

ity fields where the uncertainty is mainly due to the spatial distribu-

tion of geologic facies. However, the fact that the analysis equations

in EnKF are equivalent to the normal equations (or cokriging equa-

tions) implies that the EnKF is optimal for multi-Gaussian fields and

linear state equations [1]. In other words, using only two-point co-

variances and cross-covariances between parameters and state vari-

ables in the analysis step of the EnKF, the heterogeneity features that

are controlled by higher-order statistics may not be preserved during

the updating process. For this reason, a number of variations to the

EnKF-based methods have been proposed to ensure that the connec-

tivity prescribed by MPS simulations is preserved. For instance, Jafar-

pour and Khodabakhshi [23] introduced a probability conditioning

method, in which a probability field (i.e., the ensemble mean of the

indicator values of conductivity) is first derived by assimilating the

dynamic data, and then the MPS conductivity realizations are regen-

erated using the calculated probability field as soft data. Sun et al. [45]

and Dovera and Della Rossa [7] proposed to couple mixture Gaussian

models and the EnKF to preserve the spatial structure of MPS con-

ductivity simulations. Sarma and Chen [40] introduced a kernel EnKF

approach applied to MPS conductivity simulations. Zhou et al. [51]

and Li et al. [29] developed a normal score EnKF (NS-EnKF) approach

in which a normal-score transformation is applied to both the non-

Gaussian parameters and state variables prior to the analysis step. Hu

et al. [22] proposed to update the uniform random numbers that are

used to draw the conductivity values from local conditional probabil-

ity in the context of a sequential MPS simulation (as implemented

in SNESIM, for example). Ping and Zhang [38] presented a vector-

based level-set parameterization approach for channelized aquifers,

and then combined it with the EnKF to match the observed dynamic

data. All of the above mentioned EnKF-based methods accomplish

the goal of reproducing non-Gaussian reservoir models to varying de-

grees of success, but they may still result in suboptimal solutions be-

cause the analysis step is still based on two-point covariances and

cross-covariances.

Unlike the previous variants of the EnKF, Zhou et al. [52] proposed

a fully non-Gaussian stochastic inverse method, termed the Ensemble

PATtern matching method (EnPAT), which is an evolution of the EnKF

to deal with the issue of reproduction of spatial patterns prescribed

by MPS simulations. In EnPAT, the correlation between model pa-

rameter and state variables is delineated by MPS (i.e., pattern) rather

than by traditional two-point covariances, and thus curvilinear het-

erogeneities can be preserved while the dynamic data are integrated.

Li et al. [26] further extended this method to simultaneously estimate

parameter and state variables so that a better characterization at mul-

tiple scales is achieved. To improve the computational efficiency, Li

et al. [25] coupled the EnPAT algorithm with a pilot-point scheme

such as in the implementation of the self-calibration inverse method

[15,46].

In this work, we highlight the capabilities of the EnPAT method to

assimilate dynamic data by comparing its performance to the stan-

dard EnKF. First, the EnPAT is extended to handle continuous conduc-

tivity fields. Then, the performance of EnKF and EnPAT is compared

on a synthetic aquifer example that is characterized by curvilinear

channels with high permeability. Also, in order to explore the space of

posterior uncertainty, Bayes’ rejection sampling method is applied in

a benchmark case. The performance of EnPAT is evaluated in terms of

aquifer characterization, and flow and transport predictions. Finally,

we discuss the advantages and drawbacks of the EnPAT method.

The paper will continue as follows: the EnKF and EnPAT algo-

rithms are described in Section 2; in Section 3, a synthetic example

is analyzed using both the EnKF and the EnPAT methods. There is a

discussion of the main results in Section 4; the paper ends with a

summary.

2. The EnKF and EnPAT algorithms

2.1. General framework

The main procedure of both algorithms includes two steps: fore-

cast and analysis. The difference between the EnKF and the EnPAT

resides in the analysis step, the EnKF is based on two-point covari-

ances and the EnPAT on multiple-point statistics. The specifics are as

follows:

1. Initialization step

Generate a set of initial models conditioned to the measured

static data. In complex geological formations such as fluvial de-

posits, an MPS simulation method is commonly employed, which

uses a conceptual model represented by a training image. Exam-

ples of MPS algorithms are the single normal equation simulation

(SNESIM) [44] and the direct sampling method (DS) [31]. Note that

the initial conductivity realizations are the same for both the com-

parison of the EnKF and EnPAT methods in this paper.

2. Forecast step

For each conductivity realization X, the groundwater flow equa-

tion is solved from time t = 0 to t = k, i.e.,

Yk = f (Xk−1) (1)

where f represents the groundwater flow model, boundary condi-

tions as well as sources and sinks. Yk denotes the simulated piezo-

metric head at time t = k. The conductivity Xk−1 and correspond-

ing head Yk will be used in the analysis step to derive an updated

conductivity Xk.

3. Analysis step

Given the mismatch between the observed state Yobs
k

and the fore-

casted state values, the ensemble of conductivity X is updated

from time t = k − 1 to time t = k . Specific analysis schemes for

each method will be discussed in subsequent subsections for the

EnKF and EnPAT.

4. Loop back to step 2 for the next time step. The forecast and analy-

sis loop starts again with the updated conductivity Xk as the new
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