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a b s t r a c t

For good groundwater flow and solute transport numerical modeling, it is important to characterize the for-

mation properties. In this paper, we analyze the performance and important implementation details of a

new approach for stochastic inverse modeling called inverse sequential simulation (iSS). This approach is

capable of characterizing conductivity fields with heterogeneity patterns difficult to capture by standard

multiGaussian-based inverse approaches. The method is based on the multivariate sequential simulation

principle, but the covariances and cross-covariances used to compute the local conditional probability distri-

butions are computed by simple co-kriging which are derived from an ensemble of conductivity and piezo-

metric head fields, in a similar manner as the experimental covariances are computed in an ensemble Kalman

filtering. A sensitivity analysis is performed on a synthetic aquifer regarding the number of members of the

ensemble of realizations, the number of conditioning data, the number of piezometers at which piezometric

heads are observed, and the number of nodes retained within the search neighborhood at the moment of

computing the local conditional probabilities. The results show the importance of having a sufficiently large

number of all of the mentioned parameters for the algorithm to characterize properly hydraulic conductivity

fields with clear non-multiGaussian features.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In groundwater flow and mass transport the characterization of

the formation properties is important if we wish to predict the state

of the aquifer, i.e., the spatiotemporal distributions of piezometric

heads and solute concentrations. This characterization is generally

made on the basis of a few direct (hard) measurements of the param-

eters that control the aquifer state, such as hydraulic conductivities

and porosities, some indirect (soft) measurements, such as those de-

rived from geophysical surveys, and a few observation of the state of

the aquifer, such as piezometric heads.

Incorporating the state observations to characterize the parame-

ters of the system is the object of inverse modeling, and it is a pow-

erful but difficult task that has been the subject of extensive research

during the last decades. See the work by Zhou et al. [1] for a recent

review on inverse methods in hydrogeology.

Many inverse modeling approaches have been developed. Just

to name a few, there are the gradual deformation method, the se-

quential self-calibration, variants of the Markov chain Monte Carlo

method, the representer method, the pilot points method, etc.

[2–13].
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Besides the above mentioned methods, the ensemble Kalman fil-

ter (EnKF) [14] is the method that has attracted most attention re-

cently. Although not an inverse method by conception, the inclusion

of the parameters governing the state equation as a part of an ex-

tended state vector has turned the EnKF in the most favored inverse

method nowadays [15,16]. The EnKF is well known for its flexibility

to be applied to virtually any inverse problem, for its simple imple-

mentation and usage, and for its efficiency in producing realizations

of the geological parameters that are consistent with the observed

state variable data.

None of the above mentioned methods has been able to address

the problem of characterizing conductivity fields with clear non-

multiGaussian features, including the EnKF [17,18]. The main rea-

son why the EnKF fails for non-multiGaussian fields is that it is

optimal only for multiGaussian variates and linear state-transfer

functions [19]. For this reason, nowadays, the main focus of inverse

modeling, at least in the fields of hydrogeology and petroleum engi-

neering, is on how to reproduce non-multiGaussian patterns.

Outside of the inverse modeling realm, the development of the

single normal-equation simulation [20,21] has solved the problem of

incorporating hard and soft data for the characterization of spatial

patterns using statistics higher than order two, and thus, the inclu-

sion of the spatial features that cannot be characterized simply by

a covariance function. The algorithms that are capable to account

for statistics higher-than-order-two are broadly termed as multiple-

point statistics (MPS). They rely on the existence of a training image
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exhibiting the types of patterns to be present in the final models, from

which to infer the higher-order statistics. Some available algorithms

and codes are SNESIM [22], FILTERSIM [23], SIMPAT [24], DS [25], En-

PAT [26], and others [27–31]. But these algorithms were not devised

for inverse modeling; therefore, they cannot incorporate state vari-

able information.

There have been some attempts to combine MPS and inverse mod-

eling: Hu et al. [32] used, with moderate success, the realizations of

uncorrelated random numbers needed for the drawing of the con-

ductivity value from the local distribution function on the sequen-

tial simulation implementation of the single normal equations as

the state variables to be updated during the analysis st ep of the

EnKF; Zhou et al. [27], Li et al. [26] developed a new MPS algorithm

(termed EnPAT) which blends direct simulation [25] and the EnKF to

generate inverse conditional realizations of conductivity in channel-

ized bimodal aquifers; EnPAT works well, but it is still very CPU-time

consuming.

Some authors are against the use of MPS arguing that MPS is too

dependent on the choice of the parameters controlling the algorithm

[33]. Other approaches to address the issue of non-multiGaussianity

in inverse modeling include the works by Sun et al. [17], who com-

bined the EnKF with a Gaussian mixture model, or by Liu and Oliver

[34], Gu and Oliver[35,36] who used an iterative EnKF; plus a set

of works who combine the normal-score transform (sometimes re-

ferred as anamorphosis) and the EnKF [18,37–44]. None of these

methods can be considered as the definite solution of inverse model-

ing for conductivity fields that display non-multiGaussian features.

In this paper we describe a new method for inverse stochastic

modeling applicable for non-multiGaussian fields. We have called

this method inverse sequential simulation, and it is inspired on the

standard multivariate sequential simulation algorithm [45,46] with

normal-score transforms [47] and the Monte Carlo concept of the

EnKF. The paper describes the algorithm and its implementation, and

then performs a sensitivity analysis of the key parameters controlling

the algorithm; the paper ends with a post-audit of the generated en-

semble of realizations to check how they would perform in a solute

transport prediction exercise. The algorithm has been benchmarked

against the normal-score ensemble Kalman filter, with excellent re-

sults, in the paper by Xu and Gómez-Hernández [48]; therefore, this

paper will not focus on a comparison with other methods, but on the

implementation and performance of the algorithm.

2. Methodology

The key idea of inverse sequential simulation (iSS) is to use mul-

tivariate multi-Gaussian sequential simulation [45] to generate real-

izations of normal scores of conductivity, conditioned on conductivity

and observed head data. The main difference with standard sequen-

tial simulation is that the method does not use an analytical, station-

ary model for the auto- and cross-covariances, but rather, as in the

EnKF, non-stationary auto- and cross-covariances are derived from

an ensemble of conductivity realizations and their associated piezo-

metric heads (obtained by solving a groundwater flow model).

Before describing the whole algorithm, recall the main steps in

any sequential simulation algorithm:

1. Define a random path to visit all nodes of the grid on which the

realization will be generated.

2. Visit the random path sequentially.

(a) At each node, collect the conditioning data for all variables (in

our case, we will have two variables: conductivity and piezo-

metric heads) within a user-defined search neighborhood cen-

tered at the point to simulate (the size and orientation of the

search neighborhood, and the number of data of each variable

to keep within it are parameters that must be specified by the

user).

(b) Compute the local conditional distribution function. If we

adopt a multivariate multiGaussian random function model,

the local conditional distribution is a Gaussian distribution

with mean and variance given by the simple co-kriging esti-

mate and the simple co-kriging variance.

(c) Draw, randomly, a value from the local conditional distribution

function.

(d) Include the simulated value in the set of conditioning data for

the simulation of the next nodes and move to the next node.

Our proposal is to use this algorithm to generate conductivity fields

conditioned to piezometric heads. For this purpose we need the

auto-covariances of both conductivity and head, and their cross-

covariance. These covariances, particularly the ones involving the

piezometric heads, but also the conductivity auto-covariance when

there are conditioning conductivity data, are clearly non-stationary.

Some authors have developed analytical expressions relating these

covariances by approximating the solution of the groundwater flow

equation [49]. We propose to use experimentally-derived covariances

obtained from an ensemble of realizations, much like it is done in the

EnKF.

At any time t, we could derive all necessary covariances experi-

mentally as follows:

1. Generate an ensemble of Ne realizations of conductivity. Each re-

alization contains N nodes. Ki(j) refers to the conductivity value at

realization i and node j.

2. Given initial and boundary conditions, sources and sinks, solve the

groundwater flow equation Eq. (1) [50] for each realization until

time t and obtain an ensemble of piezometric heads.

Ss
∂H

∂t
− ∇ · (K∇H) = W, (1)

where Ss is specific storage coefficient [L−1], H is the hydraulic

head [L], K is the hydraulic conductivity [LT−1], W denotes sources

and sinks per unit volume [T−1]; t is the time [T], ∇ · is the diver-

gence operator, and ∇ is the gradient operator.

3. The cross-covariance between conductivity K at location j and

piezometric head H at location l is given by

CK,H( j, l) = 1

Ne

Ne∑
i=1

(Ki( j) − K( j))(Hi(l) − H(l)), (2)

where the overbar indicates ensemble average, i.e.,

K( j)) = 1

Ne

Ne∑
i=1

Ki( j). (3)

The auto-covariances for heads and conductivities are computed

similarly.

In addition, since we are planning to work with multiGaussian se-

quential simulation, it is more convenient to work with the normal-

score transform [47] of the variable of interest, in our case conductiv-

ity. Therefore, the sequential simulation algorithm is performed on a

new variable K̃ which is obtained by the normal-score transform of K

according to the following expression:

K̃i( j) = G−1(Fj(Ki( j))) (4)

where Fj(Ki(j)) is the local cumulative distribution at node j com-

puted (numerically) from the Ne conductivity values of all real-

izations at node j, and G(·) is the standard Gaussian cumulative

distribution function. Auto-covariances and cross-covariances are

computed, as described above, for the normal-score transformed

conductivities, not for the untransformed ones as in the description.

These covariances will be different from the ones corresponding to

the untransformed conductivity.



Download English Version:

https://daneshyari.com/en/article/4525303

Download Persian Version:

https://daneshyari.com/article/4525303

Daneshyari.com

https://daneshyari.com/en/article/4525303
https://daneshyari.com/article/4525303
https://daneshyari.com

