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a b s t r a c t

The Biosphere 2 Landscape Evolution Observatory (LEO) has been developed to investigate hydrological,

chemical, biological, and geological processes in a large-scale, controlled infrastructure. The experimental

hillslopes at LEO are instrumented with a large number of different sensors that allow detailed monitoring

of local and global dynamics and changes in the hydrological state and structure of the landscapes. Sensor

failure, i.e., a progressive reduction in the number of active or working sensors, in such an evolving system

can have a dramatic impact on observability of flow dynamics and estimation of the model parameters that

characterize the soil properties. In this study we assess the retrieval of the spatial distributions of soil water

content and saturated hydraulic conductivity under different scenarios of heterogeneity (different values of

correlation length of the random field describing the hydraulic conductivity) and a variable number of active

sensors. To avoid the influence of model structural errors and measurement bias, the analysis is based on

a synthetic representation of the first hydrological experiment at LEO simulated with the physically-based

hydrological model CATHY. We assume that the true hydraulic conductivity is a particular random realization

of a stochastic field with lognormal distribution and exponential correlation length. During the true run, we

collect volumetric water content measurements at an hourly interval. Perturbed observations are then used

to estimate the total water storage via linear interpolation and to retrieve the conductivity field via the en-

semble Kalman filter technique. The results show that when less than 100 out of 496 total sensors are active,

the reconstruction of volumetric water content may introduce large errors in the estimation of total water

storage. In contrast, retrieval of the saturated hydraulic conductivity distribution allows the CATHY model to

reproduce the integrated hydrological response of LEO for all sensor configurations investigated.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Determination of the number and location of sensors needed to

monitor a real-world hydrological process is a classical problem in ex-

perimental design, where the best compromise between maximum

amount of information and minimum number of sensors is sought

(e.g., [1,2]). In this framework, an aspect that is rarely taken into

consideration is that sensors may fail during long-term experiments,

thereby putting at risk the observability of the system since it may not

always be possible to replace broken sensors. The lifetime of sensors

is thus a crucial unknown in experiments of long duration, and it be-

comes important to be able to predict how the information obtained
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from the active sensors changes over time as the sensor network de-

teriorates.

This is the premise for the present study, which is based on the

setup of the Landscape Evolution Observatory (LEO) of the Biosphere

2 facility near Tucson, Arizona. The three synthetic, controlled hill-

slopes at LEO were constructed with the aim of improving our pre-

dictive understanding of the coupled physical, chemical, biological,

and geological processes at Earth’s surface in changing climates [3].

Each hillslope is 30 m long and 11.15 m wide and has an average slope

of 10°. The 1 m deep soil consists of basaltic tephra, ground to homo-

geneous loamy sand texture. For the first years of LEO operation, veg-

etation is not present and the research is focused on the characteri-

zation of the hydrological response of the hillslopes in terms of water

transit times, generation of seepage and overland flow, internal dy-

namics of soil moisture, and evaporation. The second part of the ex-

periment envisages the presence of plants growing on the hillslopes
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Fig. 1. The probability of a sensor being active at time t for two distributions of

failure time. The two red circles along each horizontal line give, for each distribu-

tion, the time at which the number of active sensors is expected to have dropped to

the indicated value of E[m]. For instance, the expected value of active sensors is 46

(E[m] = Pwn = 0.093 × 496) after 17 years for the blue distribution and after 23.8 years

for the green distribution. (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this article.)

and aims to monitor the oxygen and carbon cycles inside LEO, as well

as the impact of vegetation on the spatial distribution of soil water

content and on changes in the soil hydraulic properties [4,5].

To monitor these processes, each hillslope is equipped with a

dense network of soil sensors (496 locations) that measures volumet-

ric water content (496 sensors), soil water potential, and soil tem-

perature. These local observations of the internal state of the soil are

combined with measurements of the global system response, such as

the total weight of the infrastructure (and thus the water storage), the

rate of irrigation/evaporation, and the water outflow at the seepage

face. Finally, geochemical analysis of irrigation water, soil water, and

seepage outflow are available to monitor solute transport processes

along the hillslopes.

As sensors fail, the number of active sensors, m, will decrease in

time. For example, assuming that the time of failure of a sensor, tf,

follows a Gamma distribution with shape parameter α and rate pa-

rameter β , the probability that a sensor is working at time t is

Pw(t) = P(t f > t) = 1 −
∫ t

0

g(τ ;α,β) dτ (1)

where g( · ; α, β) is the probability density function (pdf) of the

Gamma distribution. With the further assumption that the times of

failure of the sensors are independent and identically distributed ran-

dom variables, the number of active sensors at time t has a bino-

mial distribution with parameters p = Pw(t) and n = 496, and the ex-

pected value of active sensors at time t is E[m] = np. Fig. 1 shows the

probability of the lifetime of a sensor, Pw(t), for two possible combi-

nations of parameters α and β (the expected value of the failure time

in this example is E[t f ] = α/β = 10 years).

In this study we assess the impact of the number of active sensors

on the observability of the LEO hillslopes. The physically-based hy-

drological model CATHY [6] is employed to numerically simulate the

water dynamics on the LEO landscapes. CATHY couples a finite ele-

ment solver of the Richards equation for subsurface flow developed

by Paniconi and Putti [7] with a surface routing scheme developed by

Orlandini and Rosso [8]. Surface flow occurs along a conceptual chan-

nel network derived from the digital elevation model (DEM) of the

landscape [9], and the coupling between the surface and subsurface

modules is resolved via a boundary condition-based partitioning of

the atmospheric inputs into soil infiltration and land surface pond-

ing. To account for heterogeneities in the LEO soil [10], we represent

the saturated hydraulic conductivity as a three-dimensional random

field with a lognormal probability distribution and an anisotropic ex-

ponential covariance function.

We use two different approaches to quantitatively assess the in-

formation associated with the network of active sensors of volumet-

ric water content. In the first approach we are interested in knowing

if LEO’s sensor network allows us to accurately retrieve the spatial

and temporal distribution of the water content in the entire land-

scape. To assess the accuracy of the retrieval, we compare the in-

tegral of the computed water content over the entire domain with

the measured variation of water storage in the landscape. In the sec-

ond approach we assess the sensor network’s ability to allow retrieval

of the saturated hydraulic conductivity of the soil, a critical parame-

ter for numerical modeling of the future hydrological experiments at

LEO. To account for parameter and measurement uncertainties, the

ensemble Kalman filter (EnKF) [11–14] is used to compute the pos-

terior probability distribution of the saturated hydraulic conductiv-

ity. EnKF performs a Gaussian approximation of sequential Bayesian

inversion, thereby extending the Kalman filter to nonlinear models.

The evolution in time of the state pdf is simulated using a Monte

Carlo (MC) technique. The ensemble of model solutions is associated

with random realizations of the unknown parameters. These MC re-

alizations are then used in the update step to compute the covariance

matrices required in the Kalman filter. Due to its straightforward im-

plementation and its computational efficiency [15], EnKF is largely

employed in engineering applications for measurement assimilation

in real time. Moreover, since EnKF seeks a probability distribution

of the parameters, this approach reduces the issues associated with

non-uniqueness of the solution that typically occurs in inverse prob-

lems (e.g., [16]).

One of the major drawbacks of the EnKF technique is the so-

called ensemble inbreeding (i.e., the strong reduction of the ensem-

ble variance after few updates). For this reason, Drecourt et al. [17]

and De Lannoy et al. [18] suggest that it is important to ensure that

the ensemble spread is large enough at the assimilation time. Re-

cent enhancements to the EnKF technique for estimation of two-

dimensional stochastic parameters include introduction of a damp-

ing parameter [19] to reduce ensemble inbreeding, and covariance

localization to clean the ensemble covariance matrices of spurious

terms [20,21]. Sun et al. [22,23] combine EnKF with grid-based lo-

calization and Gaussian mixture model clustering techniques to esti-

mate a multimodal parameter distribution. Panzeri et al. [24] couple

EnKF with the ensemble moment equation of the transient ground-

water flow equation to circumvent the MC simulation. Alzraiee et al.

[25] compare centralized and decentralized fusion to invert the mea-

surements generated with different pumping tests. Amongst applica-

tions of EnKF for estimating the spatial distribution of parameters in

three-dimensional hydrological models, Chen and Zhang [26] showed

that EnKF provides a satisfactory estimation of the three-dimensional

hydraulic conductivity field assimilating measurements of pressure

head in a synthetic example of saturated flow.

2. Problem representation

We represent the hillslope (the three LEO hillslopes are identical)

as a three-dimensional domain � with the DEM depicted in Fig. 2 and

a 1 m deep soil. The bottom of the hillslope, the two side boundaries

(the edges along the y axis in Fig. 2), and the upslope boundary are

impermeable, while the downslope boundary (at y = 0 m, hereafter

denoted by �) is the outflow face, and is modeled as a seepage face

boundary condition. Let θ (t, �x) be the soil water content [−] at a

time t [T] at a point �x = (x, y, z) ∈ �. Given a spatial distribution of θ
at a reference time t0 = 0 (initial condition), rainfall and evaporation

boundary conditions are imposed at the surface, and θ responds

according to this forcing term and to the soil hydraulic properties.

The dense sensor network allows the system to be monitored ev-

ery 15 min from the reference time t0 (times ti with ti − ti−1 = 15
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