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a b s t r a c t

Markov Chain Monte Carlo (MCMC) methods are often used to probe the posterior probability distribution

in inverse problems. This allows for computation of estimates of uncertain system responses conditioned

on given observational data by means of approximate integration. However, MCMC methods suffer from the

computational complexities in the case of expensive models as in the case of subsurface flow models. Hence,

it is of great interest to develop alterative efficient methods utilizing emulators, that are cheap to evaluate,

in order to replace the full physics simulator. In the current work, we develop a technique based on sparse

response surfaces to represent the flow response within a subsurface reservoir and thus enable efficient ex-

ploration of the posterior probability density function and the conditional expectations given the data.

Polynomial Chaos Expansion (PCE) is a powerful tool to quantify uncertainty in dynamical systems when

there is probabilistic uncertainty in the system parameters. In the context of subsurface flow model, it has

been shown to be more accurate and efficient compared with traditional experimental design (ED). PCEs have

a significant advantage over other response surfaces as the convergence to the true probability distribution

when the order of the PCE is increased can be proved for the random variables with finite variances. However,

the major drawback of PCE is related to the curse of dimensionality as the number of terms to be estimated

grows drastically with the number of the input random variables. This renders the computational cost of

classical PCE schemes unaffordable for reservoir simulation purposes when the deterministic finite element

model is expensive to evaluate. To address this issue, we propose the reduced-terms polynomial chaos rep-

resentation which uses an impact factor to only retain the most relevant terms of the PCE decomposition.

Accordingly, the reduced-terms polynomial chaos proxy can be used as the pseudo-simulator for efficient

sampling of the probability density function of the uncertain variables.

The reduced-terms PCE is evaluated on a two dimensional subsurface flow model with fluvial channels to

demonstrate that with a few hundred trial runs of the actual reservoir simulator, it is feasible to construct a

polynomial chaos proxy which accurately approximates the posterior distribution of the high permeability

zones, in an analytical form. We show that the proxy precision improves with increasing the order of PCE and

corresponding increase of the number of initial runs used to estimate the PCE coefficient.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Traditional calibration methods of subsurface reservoirs (aka. his-

tory matching) usually obtain only a single set of parameters of the

model, with uncertainty assessment provided by sensitivity calcula-

tions around the matched model. However, for example in oil field

management, modern techniques have focused on predicting the

likely range of field recoveries and consequently providing economic
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evaluations of different field development strategies. This approach

takes into account observational errors in the observed history of

the reservoir, and retrieves a set of model parameters whose simu-

lation results lie within the vicinity of observed data, and uses them

to estimate ranges in likely recovery factors. Generally, two main

approaches for subsurface model calibration exist in the literature,

one based on the optimization methods and the other based on the

Bayesian inference.

The optimization methods adjust the unknown parameter values

through an automated process to obtain reservoir models within the

allowed range of a misfit function. Various optimization techniques

have been developed in the literature, including Genetic Algorithms
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[1], Particle Swarm Optimization [2], Neighborhood Algorithm [4],

Estimation of Distribution [5], Levenberg–Marquardt [6] and LBFGS

[3]. Existing optimization methods can be roughly classified into two

general categories: stochastic algorithms and gradient-based meth-

ods. Gradient-based algorithms have several inherent limitations,

including the need to compute the gradients at each step of the op-

timization process. A definite advantage of stochastic algorithms is

that they are able to easily honor complex geological constraints by

preserving multipoint statistics present in the prior geological model;

the main drawback of these approaches is their inefficiency, as they

require large number of simulations for convergence [9,10]. How-

ever, most of these optimization-based algorithms do not provide any

statistically valid estimate for the parameters uncertainty without

additional calculations. For example, Genetic Algorithms [1] and Par-

ticle Swarm Optimization [2] do not correspond to a valid sampling

mechanism. The reason for this is that the distribution of parame-

ter values is mainly controlled by the algorithm settings [11]. This

needs to be corrected by running a second code to compute proba-

bilities associated with each set of parameters [4]. A review of recent

research activities on subsurface flow model calibration can be found

in [8,59].

Approaches based on the Bayesian inference, on the other hand,

aim at estimating the posterior probability for the reservoir prop-

erties [12]. Existing Bayesian inference methods broadly entails

algorithms based on particle filters such as the Ensemble Kalman

Filter (EnKF) [13,14], the sequential Monte Carlo methods [7] and

the Markov Chain Monte Carlo (MCMC) approaches [15,16]. MCMC

methods are often used to probe the posterior probability distribu-

tion in the Bayesian inference inverse problems. Many MCMC meth-

ods move toward the target distribution in relatively small steps,

with no tendency for the steps to proceed in the same direction

[17]. Among these methods are the Gibbs sampling method, the

Metropolis–Hasting algorithms and the slice sampling algorithm [17].

These methods are easy to implement and analyze, but unfortunately

it can take a long time for the random walker to explore all of the

space. The walker will often double back and cover ground already

covered [17]. The difficult problem is to determine how many steps

are needed to converge to the stationary distribution within an ac-

ceptable error. A good chain will have a rapid mixing at which the

stationary distribution is reached quickly starting from an arbitrary

position. Variants of MCMC techniques have been developed in the

literature to increase the convergence rate to the target distribution,

but they are usually hard to implement [17]. Among these methods

are Langevin MCMC [18], Hamiltonian Monte Carlo [19] and combi-

nations of evolutionary algorithms with MCMC [20,21].

Oliver et al. [15] utilized MCMC in the context of reservoir sim-

ulation where MCMC methods were used for conditioning a perme-

ability field to pressure data. Efendiev et al. [66] proposed to use a

two-stage approach MCMC for conditioning permeability fields. More

recently, Emerick and Reynolds [22] proposed to use MCMC to im-

prove the sampling obtained by the ENKF method. However, typical

uses of MCMC methods need more than 105 steps to sample from

the target distribution with a reasonable error [23]. For subsurface

reservoir studies, the required large number of simulations need for

convergence is practically infeasible. Hence, the main disadvantage of

these approaches is their inefficiency. Therefore, it can be extremely

time-consuming if high resolution models are used. This is particu-

larly of concern in closed-loop reservoir management, which requires

continuous real-time use of model calibration and uncertainty quan-

tification algorithms [24,25]. Thus, there is a significant need for an

efficient proxy (or surrogate) model that can predict simulation re-

sults with a reasonable accuracy.

The choice of the polynomial chaos expansions as a proxy model

was pioneered by Ghanem and Spanos [26] and has been applied

to various engineering problems [27–32,68]. The polynomial chaos

proxy has an advantage over all other surrogate models that it

systematically guarantees the convergence in probability and also in

distribution to the output random variable of interest with finite vari-

ance, i.e. cumulative oil production. However, for high-dimensional

problems, the number of the polynomial chaos terms increases dras-

tically as the order of the polynomial chaos expansions increases and

a large number of the full reservoir simulation runs may be required

to compute high-order polynomial chaos expansions. Hence, for the

efficient use of the polynomial chaos proxy, the size of the problem

has to be effectively reduced.

Dimensionality reduction techniques, which have been applied

in many application areas including reservoir simulation, represent

promising means for constructing efficient surrogate models. Many of

these techniques entail the projection of the high resolution descrip-

tion of reservoir into a low-dimensional subspace, which significantly

reduces the number of unknowns. Karhunen–Loeve representation

was first introduced by Chen et al. [33] within a reservoir engineer-

ing context to reduce the dimension of geological parameters. The

basic approach was later used by, among others, Oliver [34], Reynolds

et al. [35], and Sarma [25] to approximate the high resolution geolog-

ical model with a much lower dimensional space. Marzouk and Najm

[50] applied the polynomial chaos expansion along with the MCMC

algorithm in the Bayesian framework for a low-dimensional problem

and proved the efficiency of the algorithm. However, for the practi-

cal implementation of the polynomial chaos proxy in the Bayesian

framework, the number of the terms is still required to be further

reduced. More recently, efforts have been made to construct

solution-adaptive uncertainty propagation techniques that exploit

any structures in the solution to decrease the computational cost.

Among them are the multi-scale model reduction of [31] and the

sparse decomposition of [51–53] for the stochastic Galerkin tech-

nique, anisotropic and adaptive sparse grids of [46,54,55] for the

stochastic collocation scheme, and low-rank solution approximations

of [56–58,69].

More recently in [49], the correlation between samples was used

to justify the use of sparse promoting regularization (i.e. constraining

the �1 norm) to generate sparse PCE representation of PDEs. Simi-

larly, [61] studied a high-dimensional stochastic collocation method

where the polynomial coefficients were obtained by solving a con-

strained minimization problem with �1 regularization term. Sparse

promoting regularization can be iteratively solved using the orthogo-

nal matching pursuit (OMP) [60,62] as used in [49] or using the least

angle regression (LARS) algorithm [63] as used in [64].

In this work, we propose a heuristic method for the sparse rep-

resentation of polynomial chaos expansion and its application as a

proxy substitute for the full reservoir simulator when applied with

the MCMC method to efficiently sample from the posterior proba-

bility density function of reservoir random parameters. We use the

Karhunen–Loeve expansion to decompose the geological parameters

into a lower dimension. The polynomial chaos proxy is then trained

with the reduced-order parameters of the reservoir model. The

Bayesian inference provides a mathematical formulation for the pos-

terior distribution of reservoir parameters. Instead of running the full

reservoir simulation, we use the polynomial chaos proxy for the

Bayesian inference. Then, we apply the MCMC method to sample

from the posterior distribution.

The organization of this paper is as follows; Section 2 presents

the framework of the sparse polynomial chaos proxy. It includes the

review of the Karhunen-Loeve expansion as a dimensionality reduc-

tion technique, and the derivation of a sparse formula for the polyno-

mial chaos expansion, followed by a review of the Bayesian inverse

framework and the MCMC method to sample from the analytical ap-

proximation of the posterior distribution. In Section 3, the proposed

algorithm is applied for calibration of an analytical one dimensional

elliptic stochastic PDE and a history matching problem of a two di-

mensional example of fluvial channels. Finally, the conclusions of our

work are drawn in Section 4.
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