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a b s t r a c t

Model parameters are a source of uncertainty that can easily cause systematic deviation and significantly

affect the accuracy of soil moisture generation in assimilation systems. This study addresses the issue of re-

trieving model parameters related to soil moisture via the simultaneous estimation of states and parameters

based on the Common Land Model (CoLM). The state-parameter estimation algorithms AEnKF (Augmented

Ensemble Kalman Filter), DEnKF (Dual Ensemble Kalman Filter) and SODA (Simultaneous optimization and

data assimilation) are entirely implemented within an EnKF framework to investigate how the three algo-

rithms can correct model parameters and improve the accuracy of soil moisture estimation. The analysis is

illustrated by assimilating the surface soil moisture levels from varying observation intervals using data from

Mongolian plateau sites. Furthermore, a radiation transfer model is introduced as an observation operator

to analyze the influence of brightness temperature assimilation on states and parameters that are estimated

at different microwave signal frequencies. Three cases were analyzed for both soil moisture and brightness

temperature assimilation, focusing on the progressive incorporation of parameter uncertainty, forcing data

uncertainty and model uncertainty. It has been demonstrated that EnKF is outperformed by all other meth-

ods, as it consistently maintains a bias. State-parameter estimation algorithms can provide a more accurate

estimation of soil moisture than EnKF. AEnKF is the most robust method, with the lowest RMSE values for

retrieving states and parameters dealing only with parameter uncertainty, but it possesses disadvantages

related to increasing sources of uncertainty and decreasing numbers of observations. SODA performs well

under the complex situations in which DEnKF shows slight disadvantages in terms of statistical indicators;

however, the former consumes far more memory and time than the latter.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Soil moisture is a key variable in understanding land surface hy-

drological processes that partition precipitation into runoff and in-

filtration and that control water storage and drainage [20]. As a vi-

tal element in the water and energy cycle, soil moisture forms the

foundation of meteorological research, water resource regulation and

agricultural management [9,13,37,54]. Modeling provides temporally

and spatially continuous simulations and predictions of soil mois-

ture but lacks precision. Meanwhile, many types of observations have

uncertain accuracy and poor resolution, which is due to limited fi-
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nances and the capabilities of the utilized instruments themselves.

Many studies have noted that data assimilation has the potential to

produce continuous and accurate soil moisture data sets that are rec-

onciled in temporal and spatial resolution [6,18,22,27,28,41,52].

The assimilation of data originating from atmospheric and

oceanographic sciences [15,21] takes full advantage of imperfect

models and finite data in an optimal way by merging the information

embodied in remote-sensing or ground-based networks into a dy-

namic model to improve forecast trajectory. Many experiments have

been conducted to improve soil moisture estimation using in situ ob-

servations at the beginning of the development of land or hydrol-

ogy data assimilation [5,19,26,55]. However, remote-sensing tech-

niques dominate over in situ measurements in terms of the scope

of an observed area. Low-frequency microwave brightness temper-

ature is highly related to near-surface soil moisture and is only

weakly affected by the atmosphere and clouds. Recently, many soil

http://dx.doi.org/10.1016/j.advwatres.2015.08.003
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moisture products have been applied to enhance model simulations

on a regional scale because of the successful launch of a series of

satellites with microwave sensors, such as AMSR-E (Advanced Mi-

crowave Scanning Radiometer for Earth Observing System), ASCAT

(Advanced Scatterometer), and SMOS (Soil Moisture and Ocean Salin-

ity) [3,4,12,39]. However, the large uncertainties that exist in retrieval

algorithms may contaminate the quality of soil moisture products,

which are expected to be used during assimilation. An alternative

method is to directly assimilate brightness temperature into land sur-

face or hydrological models to yield optimal soil moisture estimation

[8,22,24,29,40].

As a fusion method, data assimilation improves model simulation

by effectively handling background error, which is not the sole factor

that influences the capability of data assimilation. Most applications

of state assimilation focus on managing the errors that are embodied

in the background, on observations and on forcing data, as opposed to

employing model structure or parameters [1,25,48,53]. However, the

outcome of data assimilation relies on an unbiased prediction of a

model state, which is largely dependent on the effectiveness and rep-

resentativeness of the model. Discrepancies between model parame-

terization and actual land surface processes account for model errors,

but many studies are conducted under the assumption of a state-of-

the-art model. Considering that parameter uncertainty affects state

estimation to a large extent, the proper specification of model param-

eters as functions of variables when characterizing a state has become

a crucial aspect of recent studies.

It is generally recognized that parameter calibration can dimin-

ish long-term bias, while state updating can weaken stochastic error.

Thus, a calibration period is usually necessary to optimize the param-

eters of a hydrological model. Recently, many scientists have focused

their attention on minimizing parameter errors in land data assimi-

lation by performing simultaneous estimations of states and param-

eters [31,32,34,38,46,47,56]. This joint method expands the data as-

similation framework from only updating model states to updating

both model states and parameters.

Within the framework of EnKF-based assimilation, three types of

algorithms are typically used for simultaneous state and parameter

estimation. EnKF, which was originally proposed by Evensen [14],

is a commonly used sequential algorithm for data assimilation and

has shown strength in dealing with non-linear models because of

its reliance on the propagation of a random ensemble of retrieved

variables. EnKF is also an advantageous approach for highly dimen-

sional applications, mainly because it captures the relevant parts of

an error structure by means of a comparatively small ensemble of

model trajectories, including (1) The state augmentation approach

[2,17,33]. Monsivais-Huertero et al. [33] employed both synthetic and

field observations to understand the effects of simultaneous state-

parameter estimation using an augmented state vector, spatial and

temporal update frequency and forcing data uncertainty in root-zone

soil moisture. (2) The dual filter approach ([30,35,44]; Lü et al., 2008).

Moradkhani et al. [35] presented a dual state-parameter estimation

approach for the sequential estimation of parameters and states in a

conceptual rainfall-runoff model (HyMOD) using observed stream-

flow. The algorithm is recursive, updating parameters and states

in turn, and is mutually affective. (3) The parameter optimization

and state assimilation approach [45,50]. Vrugt et al. [50] proposed

the combined usage of parameter optimization and sequential data

assimilation to facilitate valid treatment of input, output, parame-

ter, and model structural errors in a Sacramento model, which was

designated as the simultaneous optimization and data assimilation

method (SODA).

Given the abundance of studies on joint state and parameter es-

timation and the paucity of investigations about algorithm applica-

bility, the main objective of this study was to evaluate the perfor-

mance abilities of all three of the above-discussed algorithms in a

series of comparative experiments. We developed a data assimila-

tion framework based on the common land model (CoLM), with soil

moisture as the state variable of concern. First, we utilized in situ soil

moisture to diagnose the performance of state assimilation at differ-

ent observation intervals; at the same time, we examined the appli-

cability of retrieving information regarding three soil property pa-

rameters (volume percentage of sand, volume percentage of clay and

porosity). Second, we coupled the land surface model to a radiative

transfer model (RTM), which acted as an observation operator, and

added the standard deviation of the surface height into the param-

eter space. Brightness temperature was assimilated at different fre-

quency combinations to judge the validity of each method. All of the

soil moisture and brightness temperature experiments were imple-

mented for three different cases: parameter uncertainty, atmospheric

forcing data uncertainty and model uncertainty.

This paper is structurally organized as follows: models and meth-

ods are introduced in Section 2, in which the study area and experi-

mental design are also described. The results of and discussion about

the experiments are explained in Section 3. Section 4 presents other

related discussions and the final conclusions.

2. Data assimilation scheme

2.1. Land surface model

The CoLM [10] is an improved version of the Community Land

Model, with one vegetation layer, 10 unevenly spaced vertical soil lay-

ers, and up to 5 snow layers (depending on the total snow depth). We

employed the CoLM as a dynamic model (model operator) to main-

tain its prognostic variables, which represent soil moisture in this

work. The soil water equation is:

�z j

�t
�θ j = [qj−1 − qj] − froot, j∗Etr (1)

where �θ j is the change in water content as a result of the last time

step in layer j, and �zj is the thickness of layer j. froot, j∗ and Etr rep-

resent effective root fraction and transpiration, respectively. qj is the

water flow at the depth of the zh, j interface between layer j and layer

j+1, as calculated by Darcy’s law:

q = −K

(
∂ψ

∂z
− 1

)
(2)

K and ψ are the hydraulic conductivity and matric potential of soil,

respectively, which vary with soil water content, θ , and soil texture

based on the scheme proposed by Clapp and Hornberger [7].

(a) The hydraulic conductivity of soil, K, is:

K = Ksat s2B+3 (3)

where the wetness (liquid water degree of saturation) is defined

as:

s =
[

θ1

1 − θd − θi

]
(4)

where1 − θdrepresents porosity, and the exponent B is defined as

B = 2.91 + 0.159(%clay). For numerical reasons, when the effec-

tive porosity, (1 − θd − θi), is less than 0.05 in any of two neigh-

boring layers, or when the liquid content is less than 0.001, then

K = 0.

(b) The matric potential of soil is ψ , and the matric potential of un-

frozen soil is:

ψ = ψsat s−B (5)

CoLM establishes the relationship between soil texture and soil

thermal and hydraulic parameters as follows.
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