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a b s t r a c t

The success of a thermal water flood for enhanced oil recovery (EOR) depends on a detailed representation of

the geometrical and hydraulic properties of the fracture network, which induces discrete, channelized flow

behavior. The resulting high-resolution model is typically computationally very demanding. Here, we use

the Proper Orthogonal Decomposition Mapping Method to reconstruct high-resolution solutions based on

efficient low-resolution solutions. The method requires training a reduced order model (ROM) using high-

and low-resolution solutions determined for a relatively short simulation time. For a cyclic EOR operation,

the oil production rate and the heterogeneous structure of the oil saturation are accurately reproduced even

after 105 cycles, reducing the computational cost by at least 85%. The method described is general and can be

potentially utilized with any multiphase flow model.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Efficient numerical approaches are needed to lower the com-

putational barrier for performing optimization and uncertainty

quantification using models that accurately represent complex

multi-phase flow processes in fracture networks, with considerable

impact on our ability to sustainably manage and optimize energy and

water resource systems, and to effectively remediate contaminated

sites. For example, a reliable evaluation of the economic viability

of thermal water flood—a common enhanced oil recovery (EOR)

technique—depends on whether we can predict the oil production

rate accurately. Prediction of the oil production rate is typically

obtained by constructing a numerical model that accurately cap-

tures the geometrical and hydraulic details of the fracture network,

which induces discrete, channelized flow behavior. The network also

determines the effectiveness with which heat and brine penetrates

the rock matrix, mobilizing and displacing the oil. Simulating an

EOR operation using a discrete fracture network embedded in a

low-permeability matrix is computationally very demanding, mainly

because the detailed representation of the fracture network and

the complex geometry of the matrix blocks bounded by randomly

oriented fracture planes require high-resolution meshes.

In this paper, we apply a reduced order modeling (ROM) technique

known as the Proper Orthogonal Decomposition Mapping Method
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(PODMM)—first proposed by Robinson et al. [1]—which allows us to

reconstruct the solutions from a high-resolution model represent-

ing the fracture network as a heterogeneous medium based on solu-

tions obtained using low-resolution models that only have upscaled,

effective properties of the fracture network and thus can be effi-

ciently simulated. This technique was recently enhanced and applied

to land surface models to accurately reconstruct hydrological states,

heat fluxes, and carbon fluxes [2,3]. However, the suitability of the

method for modeling multiphase non-isothermal subsurface prob-

lems with significant nonlinear temporal and spatial dynamics has

yet to be demonstrated. This work evaluates the accuracy of PODMM

for a multiphase problem (an enhanced oil recovery problem).

PODMM can be viewed as a regression-based downscaling

technique. Overviews of empirical downscaling techniques have

been presented before (see, e.g., Wilby et al. [4], Fowler et al. [5],

Gutmann et al. [6]). Previous work on regression-based down-

scaling methods focuses on constructing empirical parametric

models between the predictors and variables of interest [7,8]. In

the context of reduced order models (ROMs), regression models

can also be constructed between model parameters and the vari-

ables of interest [9,10]. PODMM differs from the above regression

approaches in that proper orthogonal decomposition (POD) is not

just used to obtain a dimensionally reduced representation of the

high-dimensional data. Instead, a least-square minimization problem

that utilizes portions of the singular vectors obtained through the

POD procedure [11] is solved to directly map low-resolution solu-

tions to the high-resolution solutions. More details are provided in

Section 2.2.
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PODMM also differs from the projection-based POD methods that

were previously applied to subsurface flow problems [12–15] and

other engineering fields [16–18]. Specifically, the projection-based

POD method is an intrusive approach that requires projecting the

governing partial differential equations onto a linear space spanned

by the singular vectors, and implementing the resulting discrete

equations. For a multiphase non-isothermal model, the complicated

nonlinear terms require additional approximations [19–21] in order

to obtain a set of discrete equations that can be solved efficiently.

PODMM is considerably simpler since it only requires solving the

low-resolution models once the ROMs have been trained. Thus, it

does not require intrusive changes to the simulation software, mak-

ing it an attractive method for complex multiphase flow problems.

2. Methods

2.1. Mapped fracture network models

We demonstrate the proposed PODMM model-reduction ap-

proach for an EOR operation conducted in a fractured hydrocarbon

reservoir with a single injection-extraction well. An individual cycle

of the operation consists of four phases: (1) injection of hot water at

10 kg/s for 3 days, (2) an inactive soaking period of 4 days, (3) pro-

duction of oil and water for 6 days at a total rate of 5 kg/s, and (4)

an inactive rest period of 1 day. This two-week cycle is repeated 105

times for a total simulation time of 1470 days. The distribution of oil

in the reservoir and the oil production rates are the key prediction

variables of interest.

We consider a discrete fracture network within a model domain

of dimensions 100 × 50 × 30 m. Fractures are generated by randomly

sampled values for size, orientation, and aperture from appropriate,

truncated probability distributions. Two fracture sets with an average

fracture spacing of 4 m are generated using the code ThreeDFracMap

[22]. In our modeling approach, the fracture network is then repre-

sented by a heterogeneous continuum model. The fractures are first

mapped onto a structured, uniform mesh, before upscaled, heteroge-

neous, anisotropic permeabilities are calculated based on the num-

ber, aperture, and orientation of the fractures intersecting the given

element. Elements that do not contain any fractures are assigned a

low matrix permeability of 10−18 m2. The procedure is described in

detail in Parashar and Reeves (2011).

Based on this heterogeneous, high-resolution continuum model

representing a network of discrete features embedded into a low-

permeability matrix, we use the “dead-oil” (EOS8) module of

TOUGH2 [23] to simulate the response of the reservoir to cyclic in-

jection of hot water and production of a multi-phase mixture of oil

and water. Simulating a long sequence of injection-production cycles

is computationally expensive, especially if a high-resolution contin-

uum representation of the discrete network is needed to capture the

exchange of fluids between the reservoir rock (which contains most

of the oil) and a network of discrete fractures (whose main role is

to provide the pathways for oil extraction) embedded in that ma-

trix. Moreover, the resolution also affects the system behavior and

computational costs. The PODMM approach described below pre-

dicts the high-resolution behavior using a computationally efficient

low-resolution model (LRM), combined with a mapping procedure

for downscaling the simulation results. Two basic grids with different

resolutions are thus developed: a high-resolution model (HRM) with

an element size of 2 m, and a low-resolution model (LRM) with an

element size of 5 m (see Fig. 1(a)). The LRM thus has about 15 times

fewer elements than the HRM, making it significantly more efficient

at the expense of loss of accuracy in representing discrete flow behav-

ior in the fractures and fluid exchange with the matrix. The HRM pro-

vides simulation data for a relatively short training phase; it is also

used in this study as the reference solution needed to demonstrate

the accuracy of the proposed approach. The LRM provides approxi-

mate, efficient solutions for the entire simulation period; these solu-

tions are then downscaled to provide high-resolution predictions of

the cyclic EOR operation based on the mapping procedure in PODMM.

We examine three alternative LRMs: (1) an upscaled heteroge-

neous model (LRM-HET), using the exact same conceptualization

as the HRM with the exception that it uses a coarser discretiza-

tion, (2) a simple homogeneous model (LRM-HOM) with a perme-

ability of 10−13 m2, and (3) a dual-porosity model (LRM-DPM) [24]

with fracture- and matrix-continuum permeabilities of 10−13 m2 and

10–18 m2, respectively. Key parameters are summarized in Table 1.

Note that the number of elements of LRM-DPM is twice that of LRM-

HOM and LRM-HET. The permeabilities of LRM-HOM and LRM-DPM

are chosen to approximately represent the fracture network perme-

ability such that they produce some of the behaviors seen in the HRM.

However, no rigorous upscaling technique is used to determine the

permeabilities of the LRMs, e.g., by matching the oil production rate

obtained from the HRM through an inverse modeling procedure. A

calibrated LRM will likely improve the performance of the PODMM.

However, the goal of this work is to demonstrate that the accuracy of

the PODMM is not due to the calibration of LRM model parameters to

fit the outputs of the HRM.

Fig. 1(b) shows the oil saturation after 3 days. The solutions ob-

tained from LRM-HET is a smoother representation of the consider-

ably more intricate distribution obtained with the HRM. Fig. 1(c) and

(d) compares oil production rate (Qoil) determined using the HRM

and the 3 LRMs at the 55th, and 105th cycles, respectively. For the

parameters given in Table 1, LRM-HET over-predicts the Qoil while

LRM-HOM and LRM-DPM under-predict the Qoil.

2.2. Proper orthogonal decomposition mapping method

We summarize the Proper Orthogonal Decomposition Mapping

Method (PODMM) here; details can be found in [2]. The method con-

sists of a training stage and a prediction stage. During the training

stage, we determine the solutions (e.g., oil saturations and fluxes at

all locations) to the low- and high-resolution models (denoted as g

and f, respectively) at N time points. These N solutions constitute the

training set. In our example, snapshots are obtained at 1-day intervals

from multiple consecutive EOR cycles. We then perform a singular

value decomposition (SVD) of the following matrix W:

W =
[

f1 − f̄ fN − f̄
. . .

g1 − ḡ gN − ḡ

]
(1)

where fi, and gi are the high- and low-resolution solutions at the ith

time point,

f̄ = 1

N

N∑
i=1

fi, ḡ = 1

N

N∑
i=1

gi (2)

The POD bases, ζ
i
, i = 1, . . . M, are given by the resulting singular

vectors and can be decomposed into

ζi =
[
ζ f

i

ζ g
i

]
(3)

where ζ f
i

and ζ g
i

are components associated with the HRM and LRMs,

respectively, and M is the chosen number of POD bases to use in an

approximation.

During the prediction stage, we first determine a coarse-

resolution solution g, and solve

α(g) = arg min
γ

∥∥∥∥∥g − ḡ −
M∑

i=1

γiζ
g
i

∥∥∥∥∥
2

(4)
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