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a b s t r a c t

While watershed water quality (WWQ) models have been widely used to support water quality manage-

ment, their profound modeling uncertainty remains an unaddressed issue. Data assimilation via Bayesian

calibration is a promising solution to the uncertainty, but has been rarely practiced for WWQ modeling. This

study applied multiple-response Bayesian calibration (MRBC) to SWAT, a classic WWQ model, using the ni-

trate pollution in the Newport Bay Watershed (southern California, USA) as the study case. How typical input

and model structure errors would impact modeling uncertainty, parameter identification and management

decision-making was systematically investigated through both synthetic and real-situation modeling cases.

The main study findings include: (1) with an efficient sampling scheme, MRBC is applicable to WWQ mod-

eling in characterizing its parametric and predictive uncertainties; (2) incorporating hydrology responses,

which are less susceptible to input and model structure errors than water quality responses, can improve

the Bayesian calibration results and benefit potential modeling-based management decisions; and (3) the

value of MRBC to modeling-based decision-making essentially depends on pollution severity, management

objective and decision maker’s risk tolerance.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Watershed water quality (WWQ) models, such as Soil and Water

Assessment Tool (SWAT) [1,2], Watershed Analysis Risk Management

Framework (WARMF) [3–5], and Hydrological Simulation Program -

Fortran (HSPF) [6], can provide spatially and temporally distributed

simulations of hydrology and water quality variables. WWQ mod-

eling helps enhance our understanding of watershed processes of

pollutants, and build explicit linkages between pollution causes and

water quality effects. The models have been widely used in address-

ing water quality management issues [7–11], such as Total Maximum

Daily Loads (TMDLs) planning [5]. However, their applications suf-

fered significant modeling uncertainty resulting from inaccurate forc-

ing inputs, model structural inadequacy, uncertain model parameters

and observational errors (e.g., errors in water quality measurements)

[12–16]. During the past decade, modeling uncertainty has been ex-

tensively discussed with regard to hydrology [17], but has received

much less attention for water quality [16,18].

Bayesian inference using Markov chain Monte Carlo (MCMC) sam-

pling is an advanced approach for model calibration and uncertainty
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analysis, which requires an explicit statistical model of residuals

(i.e., error model) for rigorous likelihood evaluation. It provides

posterior parameter distributions and can be used to assess both

parametric and predictive uncertainties. In the field of hydrological

modeling, various Bayesian inference approaches have been pro-

posed and applied [19–26], but their applications to WWQ model-

ing have been limited [27–29]. WWQ modeling integrates pollution

simulation with hydrological simulation. However, in existing WWQ

models, watershed processes of soil erosion, chemical reactions and

pollutant transport are often accounted for by simple equations,

which reflects the current knowledge gaps [12–14]. Thus, WWQ mod-

eling generally involves much higher model structure errors than

pure hydrological modeling. On the other hand, in WWQ modeling,

model inputs of both point sources (e.g., wastewater discharge) and

non-point sources (e.g., fertilizer application and atmospheric depo-

sition) loadings are often highly inaccurate due to the lack of loading

data at desired temporal and spatial resolutions. For example, it is

impractical to continuously monitor chemical concentrations in ef-

fluents, and in many cases only yearly or monthly loading estimates

are available for daily-step simulations. Another real-world example

is that bookkeeping of fertilizer uses is usually poor, and therefore it

is impossible to know exactly when and where the historical fertil-

izer application occurred. The amount and timing of the application

are often estimated based on sales data and/or plant growth cycle.
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Therefore, WWQ modeling also involves much higher input errors

than pure hydrological modeling.

Water quality observations (e.g., instream nitrate concentrations)

are critical to the calibration of WWQ models, but are often scarce and

poorly measured. In contrast, high-frequency (e.g., daily) flow obser-

vations at gaging stations are more available and reliable, represent-

ing a general supplement to water quality observations. However,

using multiple types of observational data to constrain water qual-

ity simulation has been a highly ad hoc practice. A recent study [30]

conducted a Bayesian calibration for sediment modeling using both

flow and sediment observations. It implemented several sequential

calibration (i.e., calibrate the model for the flow response first, and

then for the sediment response) strategies in parallel, and then fused

the results through an ensemble approach. This sequential calibration

approach is sound and useful, but a more straightforward alternative

would be multiple-response Bayesian calibration. A few studies have

shown that including multiple hydrological responses (e.g., flow, soil

moisture, etc.) in the Bayesian calibration can improve identifiabil-

ity of model parameters and adequateness of uncertainty assessment

[31,32]. As discussed before, water quality simulation in general in-

volves greater and more complicated modeling uncertainty than hy-

drological simulation. Thus, the successful experience of multiple-

response Bayesian calibration in hydrological modeling may not be

fully transferable to WWQ modeling, and further studies are highly

desired.

In this study, we investigated the impact of input and model

structure errors on model calibration, prediction and management

decisions. We considered a particular modeling situation, in which

input and model structure errors are very significant and would

severely bias the simulation results. This situation is very common in

watershed-scale modeling of poorly monitored water quality param-

eters (e.g., nutrients, metals, pesticides, etc.), but has been rarely in-

vestigated in a multiple-response Bayesian calibration context. SWAT

and Differential Evolution Adaptive Metropolis (DREAM(ZS)), a state-

of-the-art MCMC algorithm developed in the field of hydrological

modeling [25,33,34], were employed as the WWQ model and MCMC

algorithm, respectively. The nitrate pollution in Newport Bay water-

shed (Southern California, USA) was the study case. A series of numer-

ical experiments were designed and implemented. Overall, the study

demonstrated the critical role of input and model structure errors in

assessing modeling uncertainty, identifying posterior parameter dis-

tributions and making management decisions, and demonstrated the

feasibility and importance of performing multiple-response calibra-

tion for WWQ models in a management context. It has also been con-

cluded that interpretation of the modeling uncertainty would depend

on water quality management concerns.

2. Multiple-response Bayesian calibration

The relationship between a model output (i.e., model response)

and its corresponding observation can be expressed as

Z = Y(θ) + ε (1)

where Z and Y(θ) are the observed and simulated values of the con-

cerned response; θ is a vector of uncertain model parameters; and ε
is a lumped residual error term. Bayes’ rule can be adopted, as

p(θ|Z) ∝ p(θ)L(θ, Z) (2)

where p(θ|Z) and p(θ) represent the posterior and prior distribu-

tions of θ, respectively; and L(θ, Z) represents the likelihood func-

tion mathematically determined by the error model of ε. In the

context of multiple-response calibration, different error models are

required for different responses, and therefore multiple likelihood

functions are needed [31]. If the residual errors of multiple responses

are assumed to be independent, the combined likelihood function

(denoted as Lmultiple) is the product of individual likelihood functions

[21,23,31]:

Lmultiple =
∏
i=1

Li
(
θ, Zi

)
(3)

where i indicates the ith response, and θ is a common set of random

model parameters for the multiple responses.

To derive the individual and combined likelihood functions, it

is critical to determine the error model of each response. In flow

modeling, normal error models have often been assumed for ε
(e.g., [20,24,34]), but have been criticized for being unrealistic [35].

Recent studies proposed more realistic but complex error mod-

els [19,22,26,36–38] for flow modeling. For example, in an auto-

correlated, heteroscedastic, and non-Gaussian error model [22], the

heteroscedasticity is reflected by a linear equation, σt = σ0 + σ1yt ,

where yt is the simulated flow at time t, σ t is the estimated stan-

dard deviation of the residual error ɛt, and σ 0 and σ 1 are two un-

known hyper-parameters. Auto-correlation of residuals is depicted

by a first order autoregressive model (i.e., AR(1)), and another hyper-

parameter, the lag-1 autoregressive parameter φ, is then included.

A skew exponential power (SEP) distribution was employed to deal

with the skewness and heavy tail issue. The SEP distribution contains

two tunable parameters, the skewness parameter ξ and the kurtosis

parameter β . More details about the SEP distribution can be found

by Schoups and Vrugt [22]. Hence, there are five hyper-parameters

(σ 0, σ 1, φ, ξ , β), hereafter denoted as a vector ϕ, to be inferred in

the Bayesian calibration. This error model leads to the following log-

likelihood function [22,37]:

log L
(
θ,ϕ, Z

)
= nlog

2σξωβ

ξ + ξ−1
−

n∑
t=1

log σt − cβ

n∑
t=1

|aξ ,t |2/(1+β) (4)

where n is the number of observations; aξ ,t = ξ−sign(μξ +σξ at )(μξ +
σξ at ), with at being an independent and identically distributed ran-

dom error with zero mean and unit standard deviation; and μξ , σ ξ ,

ωβ and cβ are all functions of the skewness parameter ξ and the kur-

tosis parameter β (see [22] for details). According to Evin et al. [37],

applying the AR(1) model to standardized residuals (i.e., ηt = εt
σt

) in-

stead of raw heteroscedastic residuals can lead to more stable predic-

tive distributions. We followed Evin et al.’s approach and at is calcu-

lated as

at = ηt − φηt−1√
1 − φ2

(5)

A few studies have specifically discussed error models for water

quality responses in the context of Bayesian inference. By Wellen

et al. [30], normality and independence of error were simply as-

sumed for sediment modeling. As suggested by Schoups and Vrugt

[22], in Bayesian calibration, one could gradually increase complexity

of the error model, from a simple Gaussian, homoscedastic and non-

autocorrelated model to Eq. (4), until posterior checks confirmed that

the residual errors are consistent with the error model assumptions.

3. Data and methods

3.1. Newport Bay Watershed

The Newport Bay Watershed (NBW) is located in Orange County,

southern California (Fig. 1). It is a highly urbanized watershed with an

area of about 400 km2. As of 2001, around 70% of NBW was residen-

tial, commercial and industrial areas, and agricultural and orchard

areas accounted for no more than 8%. It has a typical Mediterranean

climate featured by short, mild winters, and dry summers. The annual

rainfall depth is about 330 mm, occurring mostly between November

and April. About 95% of the freshwater flow volume into the upper
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