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a b s t r a c t

We introduce a new implicit approach to model multicomponent compressible two-phase flow in porous

media with species transfer between the phases. In the implicit discretization of the species transport equa-

tion in our formulation we calculate for the first time the derivative of the molar concentration of component

i in phase α (cα, i) with respect to the total molar concentration (ci) under the conditions of a constant volume

V and temperature T. The species transport equation is discretized by the finite volume (FV) method. The

fluxes are calculated based on powerful features of the mixed finite element (MFE) method which provides

the pressure at grid-cell interfaces in addition to the pressure at the grid-cell center. The efficiency of the pro-

posed model is demonstrated by comparing our results with three existing implicit compositional models.

Our algorithm has low numerical dispersion despite the fact it is based on first-order space discretization.

The proposed algorithm is very robust.

© 2015 Published by Elsevier Ltd.

1. Introduction

In two-phase compositional flow, most of the numerical models

in the literature are based on explicit approximation of the species

balance equation [1]. The nonlinearity between the phase molar

and/or mass concentration and the total concentration in the implicit

method requires some complicated derivatives that do not appear in

an explicit scheme. In the explicit scheme, one of the major draw-

backs is time step selection based on the Courant–Freidrichs–Levy

condition, known as the CFL condition. The CFL condition requires the

time step to be less than the necessary time for flow to pass through

one mesh block. The impact of this condition becomes severe when

one grid-block has a relatively small size compared to the size of

the simulation domain. Numerical modeling of fractured reservoirs

is a clear example of small and large grid-cells. Most of the numer-

ical simulators that deal with fractures require either to have small

mesh elements to explicitly model the fractures (e.g. single-porosity

models) [2–4], or to have very small elements near the fractures (e.g.

cross-flow-equilibrium approach) [5–8]. In this case the numerical

simulation becomes – computational wise – expensive, if an explicit

scheme is used in the numerical model. In compositional multiphase

flow, the use of an explicit method is preferred for the following rea-

sons: (i) significant numerical dispersion usually consorted with the
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implicit approximation, and (ii) complexity of applying a straightfor-

ward Newton method to solve the nonlinear system of equations in

the compositional multiphase flow. The importance of using implicit

scheme arises when the use of an explicit scheme is – CPU wise –

expensive as mentioned above. This will be demonstrated in the core

of this manuscript when we compare computational cost of both im-

plicit and explicit schemes using the same gridding and then reduc-

ing the size of one or multiple grid-blocks to study how the CFL con-

dition would affect the CPU time in the explicit scheme. Evidently,

the CPU cost of the implicit scheme will not be affected by the size of

the grid-block as much as by the number of the grid-blocks instead.

Despite the fact the implicit approximations are incorporated in

all of the commercial models, very few publications could be found

when an implicit scheme are discussed in compressible multiphase

flow. Most of the literature goes back to early publications. Coats

[9] presented a fully implicit scheme for compositional multiphase

flow. In his model the set of unknowns consist of pressure, and phase

mole fractions. These variables are referred to as natural-type vari-

ables. Fussel and Fussel [10] presented a formulation that uses a dif-

ferent set of variables based on phase compositions. These variables

are referred to as the mass variables. Later, Chien et al. [11] proposed

using the equilibrium ratios as a set of unknowns beside the pres-

sure and the overall concentrations rather than saturations and phase

compositions.

In Fig. 1 we show a comparison of our model to two different com-

mercial models that we denote by CM-1 and CM-2. The comparison

is based on a modified 3-component mixture example presented in
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Fig. 1. Comparison of our model to CM-1 and CM-2 with different mesh refinements;

modified coats example.

[9]. The modified example is in two-phase flow in 1-D. Results show

high numerical dispersion from CM-1, even with very fine mesh com-

pared to CM-2. Only CM-2, after removing the over and under-shoots

gives comparable results to our model. We should note that we also

compared the results to a third commercial model (CM-3). We do not

show the results of CM-3 since it does not converge when a more

refined mesh than 120 grid-blocks is used in the modified Coats ex-

ample. All of the three commercial models (CM-1, 2 and 3) are based

on first order finite difference discretization in space and time. To

demonstrate the low numerical dispersion in our model, we com-

pare results of 1-D and 2-D examples (with our model) to an explicit

higher-order method (discontinuous Galerkin method) in Section 4.

The most recent work on compositional multiphase implicit

scheme is reported in [12]. These authors chose the set of unknowns

based on the overall molar density of species and the pressure. The

phase compositions are updated in a post-processing step using con-

stant volume and temperature flash routines.

In this paper we present a new model that solves implicitly

the species balance equation. The species transport equation is dis-

cretized by using a finite volume (FV) approximation. The Newton–

Raphson (NR) method is used to solve implicitly the species trans-

port equation. The calculation of the derivatives in our formulation

will be discussed later in detail. The total flux is calculated by the hy-

bridized mixed finite element method (MFE). The latter provides ac-

curate calculation of the velocity field even in highly heterogeneous

media when compared to the traditional finite element and finite vol-

ume methods [1,5,7,13–20]. The strength of the MFE method is from

the calculation of the pressure inside a finite element and the traces

of the pressures at the interfaces of each finite element in the compu-

tational domain. The flux of each phase is deduced from the total flux

by using the phase mobility coefficient as will be discussed later. In

this paper the effect of gravity is taken into account. In two-phase

flow, the calculation of the phase fluxes is not trivial with gravity

effect. The difficulty arises from up-streaming the mobility of each

phase. Without gravity, both phases flow in the same direction as the

total flux. With gravity, however, counter-current flow may develop

at the finite element interfaces due to the density contrast. Updat-

ing the phase mobilities based on the values at the previous time

step is not consistent. A phase could appear/disappear from one time

step to another. To resolve this complexity, we have developed an ef-

ficient method to upstream the phase derivatives based on the up-

dated phase mobilities and phase fluxes at the current time step. In

this paper we use the same upstreaming technique of the phase mo-

bilities as in [1,7]. Once evaluated, the phase fluxes are then coupled

with our upstreaming technique of the phase derivatives discussed in

details in Section 3.

The compressible behavior of each phase is described by the

Peng–Robinson equation of state [21]. The computation of compo-

sition of each phase is provided by the equality of fugacities of each

component in both (vapor and liquid) phases. This calculation is com-

monly known in the literature by flash [22]. For a given pressure P

and temperature T the flash calculation is performed at each finite

element of the computational domain and the calculation is known

as PT-flash calculation. However, when an implicit scheme is used to

solve the species transport equation, the derivatives of concentration

of each component of each phase is computed with respect to the

total concentration at constant volume V and temperature T. In this

work we will show how the derivatives can be calculated without the

VT-flash.

In addition to the new derivatives that appear in the species trans-

port equation in the implicit scheme, we couple the volumetric fluxes

to the species equation differently from the work of [9,12] and oth-

ers. The pressure in our formulation is calculated in a preprocessing

step in order to update the fluxes based on the converged values of

the molar densities. We believe that this approach reduces the num-

ber of iterations per time step when compared to the implicit update

of the pressures with the molar densities and compositions. The nu-

merical examples in this work will be compared to a higher-order ex-

plicit method, that is, the discontinuous Galerkin (DG) method. The

DG method is based on a linear approximation of the molar density

inside each grid cell. As a result, we have three degrees of freedom

in each grid cell for the transport variable. A finite difference time

discretization is used in both models. The aim of this work is to show

that our implicit model can produce accurate results even when com-

pared to a higher-order method such as the DG. We believe that the

implicit scheme can be more efficient than the explicit scheme in

problems that the CFL condition has a severe constraint on the time

step as we mentioned above.

The rest of the paper is organized as follows: in the next section

we provide the differential equations describing the multicomponent

compressible two-phase flow in porous media. Then we present the

discretization of the pressure and the species balance equations. We

present seven numerical examples to demonstrate the efficiency and

accuracy of the proposed algorithm.

2. Mathematical model

2.1. Species balance equation

The mass balance of component i in compressible two-phase (gas

and oil) flow of nc-component mixture is given by the following

equations:
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