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This study formulates and analyzes continuous time random walk (CTRW) models in radial flow geome-
tries for the quantification of non-local solute transport induced by heterogeneous flow distributions and
by mobile-immobile mass transfer processes. To this end we derive a general CTRW framework in radial
coordinates starting from the random walk equations for radial particle positions and times. The particle
density, or solute concentration is governed by a non-local radial advection-dispersion equation (ADE).
Unlike in CTRWs for uniform flow scenarios, particle transition times here depend on the radial particle
position, which renders the CTRW non-stationary. As a consequence, the memory kernel characterizing
the non-local ADE, is radially dependent. Based on this general formulation, we derive radial CTRW
implementations that (i) emulate non-local radial transport due to heterogeneous advection, (ii) model
multirate mass transfer (MRMT) between mobile and immobile continua, and (iii) quantify both hetero-
geneous advection in a mobile region and mass transfer between mobile and immobile regions. The
expected solute breakthrough behavior is studied using numerical random walk particle tracking simu-
lations. This behavior is analyzed by explicit analytical expressions for the asymptotic solute break-
through curves. We observe clear power-law tails of the solute breakthrough for broad (power-law)
distributions of particle transit times (heterogeneous advection) and particle trapping times (MRMT
model). The combined model displays two distinct time regimes. An intermediate regime, in which the
solute breakthrough is dominated by the particle transit times in the mobile zones, and a late time regime
that is governed by the distribution of particle trapping times in immobile zones. These radial CTRW for-
mulations allow for the identification of heterogeneous advection and mobile-immobile processes as dri-
vers of anomalous transport, under conditions relevant for field tracer tests.
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which are taken within constant time increments at equidistant
times [13,14]. A CTRW, in contrast, models particle movements

1. Introduction

Solute transport in heterogeneous porous media displays
behaviors that cannot be captured by transport models based on
an equivalent advection dispersion equation (ADE) parameterized
by (constant) effective transport parameters. Such behaviors range
from the non-linear evolution of solute dispersion to power-law
tails in solute breakthrough curves [1,2]. The last three decades
have seen intense research to quantify these behaviors in terms
of effective transport models that can be obtained by moment
equation approaches [3], and projector formalisms [4], for exam-
ple, and include time and space fractional ADEs [5,6], multirate
mass transfer (MRMT) models [7,8], as well as continuous time
random walks [9,10], see also the reviews in [2,11,12].

In this paper, we focus on the CTRW approach to modeling non-
Fickian solute transport in heterogeneous media. Classical random
walks model particle movements by using variable spatial steps
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in a heterogeneous medium effectively as a random walk in which
both space and time increments are variable. The spatial transi-
tions may reflect the geometry of the underlying medium and flow
heterogeneity, while particle transition and waiting times reflect
persistent particle velocities over given transition distances, or par-
ticle retention due to adsorption or diffusion into immobile zones,
for example [9,15-18]. The medium heterogeneity is mapped into
the probability distribution density (PDF) of characteristic particle
transition times. The evolution of the particle density, or, equiva-
lently the solute concentration is governed by a temporally non-lo-
cal ADE whose memory kernel is given in terms of the PDF of
transition times [10,19].

The MRMT approach is phenomenologically similar to the
CTRW modeling framework as it models the impact of medium
heterogeneity on large scale transport through a distribution of
typical solute retention times in immobile regions. In fact, it can
be shown [20,21] that one model can under certain conditions be
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mapped onto the other. The latter amounts essentially to identify-
ing the relation between the PDF of particle transition times and
particle retention times in immobile regions [22-24].

As pointed out above, the CTRW model is a random walk
approach in that particle movements are governed by random
walk equations for the space and time coordinates. Therefore the
solution of CTRW and equivalent models is directly accessible to
numerical solution through random walk particle tracking simula-
tions [10]. This provides an avenue for the efficient simulation of
transport in the presence of mobile-immobile processes [23-25],
for example, and for temporally non-local transport in general [26].

Many formulations of the above models are for transport situa-
tions under uniform mean flow. Thus, for the interpretation of tra-
cer tests under forced conditions they are only of limited
applicability because the non-stationarity of the underlying flow
field is not accounted for. Haggerty et al. [27] used a Eulerian radial
MRMT implementation to interpret radial single-well injection-
withdrawal (SWIW) tracer tests in fractured dolomite. Le Borgne
and Gouze [25] used a CTRW based random walk implementation
of MRMT to model tracer breakthrough data from SWIW tracer
tests. Benson et al. [6] developed a fractional-order dispersion
model in radial coordinates to model tracer tests under forced con-
ditions. A general issue when interpreting field tracer data is to
decipher the origin of the observed non-local transport behavior,
which may range from mobile-immobile diffusive mass transfer
processes to highly heterogeneous advective transport [28,29]. In
the latter case, non-Fickian transport may be caused by a broad
distribution of flow and transport velocities; the distribution of
particle transit times depends on the flow rate and heterogeneity
in the flow properties. In the former case, anomalous transport fea-
tures are due to mass transfer between mobile and immobile
zones; particle transition times may depend on the retention prop-
erties and geometries of the immobile regions. Testing these differ-
ent hypothesis requires non-local transport models, that integrate
both diffusive and advective mass transfer processes in non-uni-
form flow conditions.

In this paper, we develop a general CTRW approach that allows
for the modeling of non-local solute transport under radial condi-
tions, which are relevant for field tracer experiments under forced
conditions. The derivation from the space-time random walk
equations gives directly the particle tracking method for its numer-
ical solution. We present three non-local CTRW based radial trans-
port implementations, for the modeling of heterogeneous
advection, mobile-immobile mass transfer (MRMT), and the com-
bination of both. To this end we review in Section 2 briefly the ran-
dom walk formulation of general radial advective-dispersive
transport. Section 3 then derives the general radial CTRW frame-
work and defines the specific CTRW models. The model break-
through curves then are analyzed in Section 4 using numerical
random walk simulations and explicit analytical expressions for
the asymptotic breakthrough behavior developed in Appendix B.
In particular, we discuss the expected differences in non-Fickian
transport behaviors induced by purely advective processes, purely
diffusive processes, and the combination of these processes.

2. Radial random walks

The classical advection-dispersion equation (ADE) for the
solute concentration c(r, t) in radial coordinates can be written as
oc(r,t) 10 10 ac

ot +Fav(r)rc(r., t)—FarD(r)Efo, (1)

where »(r) and D(r) are the radially dependent transport velocity
and dispersion coefficient; r denotes the radial distance, t denotes
time. We set the constant porosity equal to one, which is equivalent

to rescaling time. The equivalent random walk particle tracking for-
mulation is obtained by rewriting (1) in mass conservative form.
Therefore, we define the conserved radial concentration as

p(r,t) = 2mre(r, t). (2)

Notice that p(r,t) denotes the concentration per unit radial dis-
tance. Inserting the latter into (1) and rearranging terms we obtain
the radial Fokker-Planck equation
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% Tar v(r)+T+D’(r) p(r,t)—WD(r)p(r,t):O, (3)

where D'(r) denotes the derivative of D(r) with respect to r. The
equivalent Langevin equation is given by [30]
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where ¢&.(t) is a Gaussian white noise of zero mean and the
correlation function (& (t)&.(t)) =6(t—t'). Here and in the
following, we employ the Ito interpretation [30] of the Langevin
equation (4). The particle density is given in terms of the radial tra-
jectories as p(r,t) = (§[r — r(t)]), and by virtue of (2), we obtain for
the concentration distribution
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In the following, we will consider the case of [31]
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where o is dispersivity, and k, = Q/(2w) with Q the flow rate.
Notice that more general radial dependences of flow velocity and
dispersion can be considered within the approaches developed in
the following. Here, we focus on the choice (6). With these defini-
tions, the Langevin equation (4) simplifies to

dr(t) k, 20k, .
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The temporally discretized version of the radial Langevin equation
is given by
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where r, =r(t,), t, = nAt, and ¢, is a Gaussian random variable
with zero mean and unit variance.

3. Radial continuous time random walks

The radial random walk particle tracking formulations
developed in the following are based on the generalization of the
radial random walk process (8) in terms of the continuous time
random walk

Tnyl = I + £+ V2008, (9a)

tn+1 =ty + r,,(r), (9b)

where ¢ is a constant transition length, and t(r) a radially depen-
dent, independently distributed random transition time with the
probability density function (PDF) . (t,r). Notice that the classical
formulation (8) is obtained by setting 7,(r) = ¢r/k, in (9). The
distribution of the spatial transition lengths Ar = ¢+ +2afé, is
denoted by ,(Ar). The mean and mean square displacements are
given by (Ar) = ¢ and (Ar?) = 204, where we disregard contributions
of order ¢*. Notice that the transition length ¢ are chosen such that
<o



Download English Version:

https://daneshyari.com/en/article/4525374

Download Persian Version:

https://daneshyari.com/article/4525374

Daneshyari.com


https://daneshyari.com/en/article/4525374
https://daneshyari.com/article/4525374
https://daneshyari.com/

