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in the presence of viscous and buoyancy forces are highly nonlinear and hyperbolic. Numerical simula-
tion of multiphase flow processes in heterogeneous formations requires the development of discretiza-
tion and solution schemes that are able to handle the complex nonlinear dynamics, especially of the
saturation evolution, in a reliable and computationally efficient manner. In reservoir simulation practice,
single-point upwinding of the flux across an interface between two control volumes (cells) is performed
Discretization for each fluid phase, whereby the upstream direction is based on the gradient of the phase-potential
Upwinding (pressure plus gravity head). This upwinding scheme, which we refer to as Phase-Potential Upwinding
Gravity (PPU), is combined with implicit (backward-Euler) time discretization to obtain a Fully Implicit
Nonlinear solver Method (FIM). Even though FIM suffers from numerical dispersion effects, it is widely used in practice.
Immiscible multiphase flow This is because of its unconditional stability and because it yields conservative, monotone numerical
solutions. However, FIM is not unconditionally convergent. The convergence difficulties are particularly
pronounced when the different immiscible fluid phases switch between co-current and counter-current
states as a function of time, or (Newton) iteration. Whether the multiphase flow across an interface
(between two control-volumes) is co-current, or counter-current, depends on the local balance between
the viscous and buoyancy forces, and how the balance evolves in time. The sensitivity of PPU to small
changes in the (local) pressure distribution exacerbates the problem. The common strategy to deal with
these difficulties is to cut the timestep and try again. Here, we propose a Hybrid-Upwinding (HU) scheme
for the phase fluxes, then HU is combined with implicit time discretization to yield a fully implicit
method. In the HU scheme, the phase flux is divided into two parts based on the driving force. The vis-
cous-driven and buoyancy-driven phase fluxes are upwinded differently. Specifically, the viscous flux,
which is always co-current, is upwinded based on the direction of the total-velocity. The buoyancy-
driven flux across an interface is always counter-current and is upwinded such that the heavier fluid goes
downward and the lighter fluid goes upward. We analyze the properties of the Implicit Hybrid
Upwinding (IHU) scheme. It is shown that IHU is locally conservative and produces monotone,
physically-consistent numerical solutions. The IHU solutions show numerical diffusion levels that are
slightly higher than those for standard FIM (i.e., implicit PPU). The primary advantage of the IHU scheme
is that the numerical overall-flux of a fluid phase remains continuous and differentiable as the flow
regime changes between co-current and counter-current conditions. This is in contrast to the standard
phase-potential upwinding scheme, in which the overall fractional-flow (flux) function is non-differen-
tiable across the boundary between co-current and counter-current flows.
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1. Introduction sequestration, a Fully Implicit Method (FIM) [2] is widely used to

solve the coupled nonlinear mass conservation equations. The

In reservoir simulation applications, including oil/gas recovery standard FIM scheme employs implicit (backward-Euler) dis-

processes, groundwater remediation, and CO, subsurface cretization for time and Phase-Potential-based Upwinding (PPU)

for space. For the PPU scheme, the upstream direction of a fluid-
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the number of mass conservation equations per control-volume is
equal to the number of components used to describe the subsur-
face flow process. For immiscible two-phase flow, which is the
focus of this work, there are two nonlinear conservation equations
per computational cell (control volume). So, using the standard
FIM (i.e., backward-Euler PPU) entails solving a system of coupled
nonlinear algebraic equations (usually cast in residual form) for
each timestep. A Newton-based strategy with full Jacobian matri-
ces is the method of choice as the nonlinear solver. Even though
the computational cost of repeatedly constructing and solving
FIM Jacobian systems is substantial, the primary driver for the
wide use of FIM in reservoir simulation is its unconditional stabil-
ity [13,2]. Thus, in theory, FIM allows for taking arbitrary timestep
sizes without worrying about the numerical stability of the compu-
tations. In practice, however, FIM is not guaranteed to converge for
the chosen timestep, and we will discuss this issue further.
Nevertheless, the favorable stability properties of FIM are highly
desirable because the fully-implicit treatment can deal effectively
with the different nonlinearities and the enormously wide range
of (phase) velocities across the computational domain at a given
time [9]. In addition to computational cost, the unconditional sta-
bility of FIM must be reconciled with the low-order numerical
solutions, namely, first-order in space and time.

The convergence properties of FIM depend strongly on the phy-
sics being modeled, the spatial and temporal discretization
schemes employed, and the nonlinear solution algorithm that are
used. Nevertheless, it is safe to state that reservoir simulation using
standard FIM (i.e., Implicit-PPU) is far from being unconditionally
convergent [8,18]. In practice, nonlinear convergence problems in
the course of a reservoir-simulation are a major concern because
they can easily cause severe restrictions on the timestep size that
can be used. To deal with such nonlinear convergence difficulties,
reservoir simulators often employ a host of heuristics to adaptively
control the timestep size, including timestep cutting. Different
reservoir simulators and different users employ different heuris-
tics, which are often tailored to a specific class of problem, and
even a specific ‘important’ reservoir model. Overall, such
convergence problems have a significant negative impact on the
robustness of reservoir simulators, and they limit our ability to
perform simulations (e.g., sensitivity studies and uncertainty
quantification) of high-resolution reservoir-characterization mod-
els in a predictable manner. Moreover, as the need to model com-
plex subsurface processes increases, the demands on the nonlinear
solver are expected to increase dramatically.

Part of the challenge in developing physics-based nonlinear
solvers is that the coupled nonlinear conservation equations gov-
erning multiphase flow and transport in heterogeneous porous
media are quite difficult to analyze. As a result, there has been a
tradition of analyzing linearized subproblems (e.g., flow, or trans-
port) often for mixed-implicit formulations, instead of dealing
directly with FIM formulations. So, when it comes to the nonlinear
solution strategy, the complex interactions between (1) the spatial
and temporal scales that govern the physics of flow and transport,
(2) the spatial and temporal discretization, and (3) the nonlinear
and linear solvers have received little attention. The result is that,
in practice, the task of solving large nonlinear systems of coupled
algebraic equations for a given timestep is tackled using a damped
(safeguarded) Newton method (usually with full Jacobians) guided
by various heuristics to detect convergence problems and prescribe
a remedy, including cutting the timestep and restarting the itera-
tive process.

Jenny et al. [8] developed a physics-specific nonlinear solver for
the saturation (transport) equation of immiscible two-phase flow
without buoyancy effects. They used the inflection point of the
analytical flux (fractional-flow) function to guide the Newton-
based iterative updating of the saturation field. Jenny et al.

embedded their saturation (transport) nonlinear solver into a
Sequential Fully Implicit (SFI) scheme. In their SFI strategy, the
pressure is solved implicitly, and the total-velocity field is com-
puted; then, the saturation is obtained using their inflection-based
Newton solver. An outer loop is wrapped around the two
sequential loops of implicit-pressure and implicit-saturation.
Their scheme was proved to be unconditionally convergent for
immiscible two-phase flow without buoyancy. The proof relied
on the use of potential-ordering [9] of the FIM system to split the
flow (pressure and total-velocity) from the transport (saturation).
The saturation is then updated cell-wise based on the properties
of the analytical flux function. Specifically, the nonconvex, but
monotone, fractional-flow (flux) function was divided into two trust
regions delineated by the inflection point. If the local (control-
volume) saturation update obtained by the full Newton update
would cross the inflection saturation, the update is simply chopped
back to the inflection point, and the iterative process is continued.

When in addition to the viscous forces, buoyancy and/or capil-
lary forces are present, numerical simulation of multiphase flow
gets much more complicated. In this paper, we focus on immiscible
two-phase flow in the presence of both viscous and buoyancy
forces, and we ignore the effects of capillarity. As the relative
importance of buoyancy increases, the analytical fractional-flow
(phase-flux/total-flux) function can become nonmonotonic; this
function usually has two inflection points. The details of nonmono-
tonicity and nonconvexity of the (analytical) flux function depend
on the relative-permeability relations, viscosity ratio, and the
(local) balance of the viscous and buoyancy forces. The nonmono-
tonicity of the analytical fractional-flow is associated with counter-
current flow, whereby the two immiscible fluids flow in opposite
directions across the interface of interest.

Many nonlinear convergence problems of the standard FIM (i.e.,
Implicit-PPU) formulation have been linked to the occurrence of
counter-current flow - as a function of space and time. In multi-
phase problems, changes between co-current and counter-current
flow regimes as a function of time, or (Newton) iteration, can lead
to oscillations in the computed saturations and ultimate
divergence of the solver. In the standard Phase-Potential-based
Upwinding (PPU) spatial discretization scheme [13,2,3], the
upstream direction of a phase-flux is determined based on the
overall phase-potential (phase-pressure plus gravity head)
difference. So, as the phase-flux changes between co-current and
counter-current states, the upstream direction for the fluid-phase
gets switched accordingly, and the numerical fractional-flow func-
tion becomes discontinuous. In most reservoir models, neighboring
cells often have different properties, especially for the absolute
permeability, and the spatial distribution and temporal evolution
of the flow regimes (co-current and counter-current) in the com-
putational domain can be quite complex. The discontinuities in
the PPU numerical flux across the co-current/counter-current flow
regimes can be quite severe, and they can lead to ill-conditioned
Jacobian matrices and serious convergence problems in the
Newton-based iterative solution process [11].

Wang and Tchelepi [17] extended the work of Jenny et al. [8] to
nonlinear two-phase problems in the presence of both viscous and
buoyancy forces. They proposed a ’trust-region’ Newton solver, in
which the analytical fractional-flow function is divided into trust
regions of saturation. In simple terms, a ‘trust region’ is one for
which the Newton method is guaranteed to converge. The satura-
tion intervals were delineated by the end-points, inflection points,
and the unit-flux point of the analytical fractional-flow. Wang and
Tchelepi used their ‘trust-region’ modified-Newton nonlinear
scheme to improve the robustness and efficiency of the standard
FIM (i.e., implicit PPU) approach for problems with gravity. They
showed excellent convergence behavior for highly heterogeneous
three-dimensional reservoir models in the presence of viscous
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