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a b s t r a c t

We consider the computational challenges associated with uncertainty quantification involved in
parameter estimation such as seismic slowness and hydraulic transmissivity fields. The reconstruction
of these parameters can be mathematically described as inverse problems which we tackle using the
geostatistical approach. The quantification of uncertainty in the geostatistical approach involves
computing the posterior covariance matrix which is prohibitively expensive to fully compute and store.
We consider an efficient representation of the posterior covariance matrix at the maximum a posteriori
(MAP) point as the sum of the prior covariance matrix and a low-rank update that contains information
from the dominant generalized eigenmodes of the data misfit part of the Hessian and the inverse covari-
ance matrix. The rank of the low-rank update is typically independent of the dimension of the unknown
parameter. The cost of our method scales as Oðm log mÞ where m dimension of unknown parameter
vector space. Furthermore, we show how to efficiently compute measures of uncertainty that are based
on scalar functions of the posterior covariance matrix. The performance of our algorithms is demon-
strated by application to model problems in synthetic travel-time tomography and steady-state hydraulic
tomography. We explore the accuracy of the posterior covariance on different experimental parameters
and show that the cost of approximating the posterior covariance matrix depends on the problem size
and is not sensitive to other experimental parameters.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

One of the central challenges in the field of geosciences is to
develop computationally efficient statistical methods for optimiz-
ing the use of limited and noisy environmental data to accurately
estimate heterogeneous subsurface geological properties. In addi-
tion, it is necessary to quantify the corresponding predictive uncer-
tainty. Mathematically, imaging can be performed using inverse
problems theory, which uses measurements to make inference of
system parameters. Efficient algorithms for inverse problems are
necessary to solve problems of realistic sizes, quantified by the
spatial resolution of the reconstructed parameters and number of
measurements available for reconstruction. Using these efficient
algorithms scientists can gain better knowledge of soil moisture
content, the porosity of geologic formations, distributions of

dissolved pollutants, and the locations of oil deposits or buried liq-
uid contaminants. These detailed images can then be used to better
locate natural resources, treat pollution, and monitor underground
networks associated with geothermal plants, nuclear waste repos-
itories, and carbon dioxide sequestration sites. We aim to solve
these problems by employing the geostatistical approach that
stochastically models unknowns as random fields and uses
Bayes’ rule to infer unknown parameters by conditioning on
measurements. However, due to high computational costs in iden-
tifying small scale features, these methods are challenging. These
costs occur because solving inverse problems requires multiple
expensive simulations of partial differential equations as well as
representing high dimensional random fields, especially on irregu-
lar grids and complicated domains. Additional details about the
geostatistical approach have been provided in Section 2.

Uncertainty in the context of Bayesian inverse problems is rep-
resented by the posterior probability density function. For linear
inverse problems, if the measurement noise is additive Gaussian
and the prior model is specified by a Gaussian random field, then
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the resulting posterior probability density function (PDF) is also
Gaussian and is fully specified by calculating the mean (which
coincides with the maximum a posteriori, or MAP, estimate), and
the posterior covariance matrix. Computing the mean leads to a
weighted linear least squares optimization problem, which can
be tackled by several efficient numerical algorithms. For nonlinear
inverse problems, a linearization of the measurement operator
yields a local Gaussian for the posterior PDF. The MAP point can
be computed by solving a weighted regularized nonlinear least
squares problem and the posterior covariance matrix can be
approximated by the inverse of the Hessian of the negative
log-likelihood of the posterior PDF computed at the MAP estimate.
Although considerable effort has been devoted to computing the
MAP estimate (see for example [25,35,36]), relatively fewer
number of works have addressed the computation of the posterior
covariance matrix. In this work we focus on an efficient represen-
tation of the posterior covariance matrix which is a measure of
uncertainty associated with the reconstruction of the parameters
of interest.

Computing and storing the approximation to the posterior
covariance matrix is computationally infeasible because the prior
covariance matrices arising from finely discretized fields and
certain covariance kernels are dense, and computing the dense
measurement operator requires solving many forward PDE
problems, which can be computationally intractable. In ill-posed
inverse problems, the data is informative only about a
low-dimensional manifold in the parameter space. This property
has been exploited previously in developing efficient approximate
representations to the posterior covariance matrix as the sum of
the prior covariance matrix and a low-rank update that contains
combined information from both the prior and the data misfit part
of the Hessian (see for example, [11,12,18]). The low-rank modifi-
cation is computed by the solution of a large-scale eigenvalue
problem involving the prior-preconditioned Hessian. The prior
covariance matrices can be modeled as discrete representations
of operators of the form A�a, where A is a partial differential oper-
ator (for e.g., the Laplacian) and ais a parameter chosen such that
the infinite dimensional formulation is well-posed [39]. Another
choice for prior covariance matrices is using Spartan Gibbs random
field [23]. In this work we focus on the Matérn class of covariance
kernels [40].

The ability of being able to compute measures of uncertainty is
extremely important for the field of Optimal Experimental Design
(OED), which seeks to determine the experimental setups which
maximize the amount of information that can be gained about
the parameters of interest. The design variables which control
the accuracy of the parameter reconstructions could be the mea-
surements or measurement types, numbers, locations of sources
and/or detectors and other experimental conditions. A prevalent
approach to OED involves optimizing an objective function which
involves a scalar measure of uncertainty associated with the
parameter reconstruction (defined on the basis of the posterior
covariance matrix) and attempts to minimize this objective func-
tion with respect to design parameters. Since during the context
of optimizing the experimental setup, the inverse problem has to
be solved several times and the resulting uncertainty needs to be
estimated at each iteration of the optimization routine, we would
like an efficient method for computing the objective function
(i.e., the measure of uncertainty). We will provide an efficient
method for computing a few of these uncertainty measures. A good
review of optimal experimental design in the Bayesian context is
provided in [13]. Common optimality criteria which can be used
as objective functions include the alphabetic criteria, for example,
A-, C-, D-, E-, and T-optimality criteria (these will be defined in
Section 6). The definitions of the optimality criteria in the

geostatistical context, along with a discussion of physical and
statistical significance of these criteria and its applicability in
non-Gaussian settings is available in [32].

Contributions: We model the prior covariance matrix Cprior

with entries arising from covariance kernels, as is common practice
[25]. Although the resulting covariance matrices are dense, in our
previous work [4,36], we have shown that we can obtain the best
estimate using techniques (such as FFT based methods and
H-matrix approach) to reduce the storage and computational cost
from Oðm2Þ to Oðm log mÞ (m is the number of unknown param-
eters). However, except when the number of measurements are
small, e.g., Oð100Þ, computing entries of the posterior covariance
matrix is computationally impractical. We show how to compute
an efficient representation of the posterior covariance matrix as a
low-rank modification of Cprior and the low-rank update is com-
puted efficiently using a randomized algorithm. A major advantage
of our approach is that there is great flexibility in experimenting
with several covariance kernels, since the prior covariance matrix
computations are handled in a black-box fashion. This is a major
difference in our work compared to [11,12,18], that we consider
directly modeling the entries of the prior covariance matrix using
the Matérn class of covariance kernels, instead of modeling the
prior as the inverse of a discretized differential operator (such as
the Laplacian). Although these two approaches appear disparate,
their equivalence has been established in [28].

A second contribution of this paper is that we provide an
algorithm for approximating the posterior covariance matrix that
does not require forming the square root (or equivalently
Cholesky factorization) and inverse of the prior covariance matrix
Cprior. The approach in [11,12,18] considers the prior precondi-

tioned Hessian (defined as C1=2
priorHredC

1=2
prior, where Hred is the

Gauss–Newton Hessian of the data misfit term). Computing the
square root of a matrix is an expensive operation for finely dis-
cretized grids arising from large-scale 3D problems. The work in
[11,12,18] avoids this issue by considering priors for which the
square-root is explicitly known. Since the matrix square root is
not explicitly known for arbitrary covariance matrices, this
assumption is very restrictive from a modeling stand point. The
algorithm we propose only requires forming matrix–vector
products (henceforth, referred to as matvecs). The key idea is to
consider an equivalent generalized eigenvalue problem Ax ¼ kBx
where Ais the Hessian corresponding to the data-misfit and
B ¼ C�1

prior is the inverse prior covariance matrix. The randomized
algorithm that we propose for approximating the posterior covari-
ance matrix Cpost is simple to implement, is computationally effi-
cient, and comes with error bounds established in our previous
work [37].

Another important contribution of our work is the efficient
computation of various measures of uncertainty which leverages
the efficient representation of the posterior covariance matrix,
written as a low-rank correction to the prior covariance matrix. A
second computational burden occurs when the number of mea-
surements are large because of operations on a dense
cross-covariance matrix, which scale as Oðn3Þ, where n is the num-
ber of measurements. While some of the criteria (A- and C-) can be
evaluated when the number of measurements are small, other cri-
teria (such as D- and E-) are altogether computationally infeasible.
However, using an efficient representation of the approximate pos-
terior covariance and using matrix-free techniques, we show how
several of these optimality criteria can be computed more effi-
ciently. We note a further advantage of using covariance kernels
to model Cprior: Computing the variance of the posterior covariance
requires computing the diagonals of the prior covariance matrix
which can be easily computed, when the covariance kernel is spec-
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