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a b s t r a c t

We present an immersed structure approach for modeling the interaction between surface flows and
vegetation. Fluid flow and rigid and flexible vegetative obstacles are coupled through a local drag relation
that conserves momentum. In the presented method, separate meshes are used for the fluid domain and
vegetative obstacles. Taking techniques from immersed boundary finite element methods, the effects of
the fluid on the vegetative structures and vice versa are calculated using integral transforms. Using a sim-
ple elastic structure model we incorporate bending and moving vegetative obstacles. We model flexible
vegetation as thin, elastic, inextensible cantilever beams. Using the immersed structure approach, a fully
coupled fluid-vegetation interaction model is developed assuming dynamic fluid flow and quasi-static
bending. This relatively computationally inexpensive model allows for thousands of vegetative obstacles
to be included in a simulation without requiring an extremely refined fluid mesh. The method is validated
with comparisons to mean velocity profiles and bent vegetation heights from experiments that are repro-
duced computationally. We test the method on several channel flow setups. We calculate the bulk drag
coefficient in these flow scenarios and analyze their trends with changing model parameters including
stem population density and flow Reynolds number. Bulk drag models are the primary method of
incorporating small-scale drag from individual plants into a value that can be used in larger-scale models.
Upscaled bulk drag quantities from this method may be utilized in larger-scale simulations of flow
through vegetation regions.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. Motivation

Flow in coastal regions is complicated by the presence of smal-
ler-scale features including barrier islands, dykes, levees, and vege-
tated marshlands. Coastal vegetation, perhaps the smallest-scale of
these features is one of the most important. The interaction of sur-
face water flows and tightly packed beds of vegetation is an extre-
mely complicated environmental process depending on many
factors including water depth, vegetation height, vegetation thick-
ness, vegetation flexibility, vegetation spacing, and flow velocity.
The presence of vegetation affects surface flow by causing resis-
tance to the flow, altering turbulence characteristics, attenuating
waves, and increasing mixing. Flow resistance, mostly in the form

of form drag, is the most important effect of vegetation on the
large-scale flow.

Much of the effort in the numerical modeling of flow through
vegetated regions has focused on developing turbulence closure
schemes to the governing equations. There are two main
approaches to providing turbulence closure. One method uses
the Reynolds Averaged Navier–Stokes (RANS) equations, which
requires a model for Reynolds stresses to provide turbulence clo-
sure. The other method uses Large Eddy Simulation (LES) turbu-
lence models to solve the filtered Navier–Stokes equations.

RANS methods have been used with varying degrees of success.
Christensen [1] found that simple mixing length closure methods
can be successful models for flow through simple domains.
However, Wilson and Shaw [2] acknowledge that first order
RANS closure schemes, while simple, do not provide results that
adequately match empirical data through more complex domains.
They propose a higher order closure scheme for a spatially as well
as temporally averaged version of the governing equations, result-
ing in a one-dimensional representation of the problem. Raupach
and Shaw [3] extend this work, proposing a method of obtaining
momentum and energy equations in multi-connected flows.
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These equations capture different momentum and dissipation
terms resulting from the three-dimensional nature of this flow.
Raupach et al. [4] validate this model experimentally, using alu-
minum strips to model vegetation.

The most commonly used RANS closure schemes are two equa-
tion methods. These schemes involve solving two transport equa-
tions for turbulent kinetic energy and dissipation whose
solutions define an eddy viscosity. These equations contain empiri-
cally calculated constants. Burke and Stolzenbach [5] introduce
drag-related source terms to model the effect of vegetation. The
most commonly used two equation closure models are the k–�
and k–x models. López and Garcia [6,7] give a full analysis of these
schemes and show their ability to predict 3D flow patterns. Defina
and Bixio [8] shows that a k–� model may accurately predict flow
patterns and eddy viscosities, but may poorly predict more com-
plex turbulence characteristics.

As an alternative to RANS models, LES can be used to solve the
filtered Navier–Stokes equations and can provide an almost com-
plete description of the flow, while not requiring empirically
derived transport equations to be solved. Early simulations of flow
and turbulent structures above forests by Moeng [9], Shaw and
Schumann [10], Kanda and Hino [11], and Dwyer et al. [12] show
that important turbulence structures cannot be captured using a
RANS model, but can be captured LES. LES of flow through vege-
tated channels is presented by Cui and Neary [13], Stoesser et al.
[14,15] and Palau and Stoesser [16]. Mattis et al. [17] treat a bed
of rigid vegetation as a porous medium and parametrize the drag
coefficient in terms of nonlinear upscaling laws. In-depth analyses
of turbulence statistics and temporally-averaged characteristics of
these flows demonstrate the superiority of LES to RANS in captur-
ing fine-scale flow qualities. However, LES may require signifi-
cantly higher resolution than RANS.

The common approach for computationally modeling flexible
vegetation is by treating a piece of vegetation as a flexible can-
tilever beam. Kutija and Hong [18] first proposed this method
using standard Timoshenko [19] beam theory. Saowapon and
Kouwen [20] developed a similar model. Darby [21] describes a
one-dimensional model that may be used for both flexible and
rigid vegetation. Erduran and Kutija [22] extend the work of
Kutija and Hong [18] by using a 3D RANS technique with a com-
bination of mixing length and eddy viscosity closure schemes.
They propose quasi-3D coupling with the shallow water equations.
Ikeda et al. [23] use cantilever beam theory and 2D LES to model
‘‘monami,’’ the waving of flexible plants due to large eddies caused
by instabilities in the flow field. They utilize a separate vegetation
grid to track the movement of each piece of vegetation. Monami is
explained and modeled in depth by Nepf and Ghialberti [24].
Velasco et al. [25] use classical beam theory to compute the dis-
placement of flexible beams under small to moderate deflection.
Kubrak et al. [26] extend the method developed by Kutija and
Hong [18] for large deflections. Li an Xie [27] build off work involv-
ing stiff vegetation by Li and Zeng [28], add a thin plate of ‘‘foliage’’
to the stems and use a 3D LES scheme with a Smagorinsky closure
model. They do not completely couple these models. Instead, they
used a finite difference method developed by Al-Sadder and Al-
Rawi [29] to solve the beam equation for a large variety of inflow
velocities and performed a parameterization for the bent stem
height based on flow velocity.

All of the above methods only consider planar bending; how-
ever in a flow with large velocity or much directional change or
turbulence, we would not expect planar bending. Also, most of
these models do not appropriately handle large deflections and
are only valid for small deflections. They also tend to not be tightly
coupled with the flow solver. We want to develop a method using
cantilever beam theory to model flexible vegetation that is as

robust and accurate as possible but is not overly computationally
expensive.

1.2. Objectives

In this paper a new method for modeling fluid-vegetation inter-
action allowing flexible vegetative obstacles. We present a method
for modeling the large deflection of individual vegetative obstacles
as flexible cantilever beams. A robust numerical method for the
beams using the finite element method is presented, verified, and
validated against test problems. A thorough evaluation of com-
putational expense is presented.

We present a method for coupling fluid flow with a large num-
ber of rigid and flexible vegetative obstacles. This method is an
immersed structure method where separate meshes for the fluid
and vegetative obstacles are used and ideas from fluid–structure
interaction modeling are used to map the effects of one to the
other. The method assumes a local drag model for individual veg-
etative obstacles. By using a simple local model, many more obsta-
cles may be included than would otherwise be computationally
viable; however, because of its simplicity it can only be expected
to reproduce mean quantities. The method conserves momentum
between drag in the fluid and the force required to bend obstacles.
Validation is done through comparisons of mean velocity profiles
of channel flow through tightly packed beds of rigid and flexible
model stems. For flexible vegetation, average deflected heights
are validated against experimental data.

An important application of the presented method is in
calculating drag relationships that can be used in larger-scale mod-
els. Because we resolve fine-scale detail in a computationally
viable way that preserves mean flow characteristics, it is ideal for
upscaling. Bulk drag is the main method for quantifying the drag
effects of a large number of obstacles packed together. It is dis-
cussed in detail in the following section. We use the method to cal-
culate bulk drag coefficients for channel flows containing
vegetative obstacles. Replicating the geometry of experimental set-
ups as closely as possible, we reproduce trends for bulk drag relat-
ing to changes in velocity, spacing, and size that have been
observed in experiments.

1.3. Bulk drag

One of the main effects that vegetation has on surface flow is
resistance due to form drag. In this paper, we use the bulk drag
coefficient of a bed of vegetation as the main quantity for compar-
ison to experimental results. For a densely-packed vegetated chan-
nel, the amount of drag depends on many factors, including free-
surface effects, turbulence, and complex velocity profiles. These
effects are described in detail by Petryk [30]. Also, the presence
of nearby vegetative obstacles affects the drag. As described by
Nepf [31], for a vegetated channel, drag force per unit fluid volume
is defined by the bulk drag equation

Fdrag ¼
1
2
qeCdaU2 ð1Þ

where eCd is a non-dimensional bulk drag coefficient, q is the fluid
density, U is the mean velocity, and a is the projected plant area
per unit volume, the so-called vegetation population density.
Modeling the plants as cylinders, a (per meter) is defined as

a ¼ NvDv ¼
Dv

ðkÞ2
ð2Þ

where Nv is the number of plants per unit horizontal area, Dv is the
mean cylinder diameter, and k is the mean spacing between plants.
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