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a b s t r a c t

One major challenge in modeling groundwater flow within heterogeneous geological media is that of
modeling arbitrarily oriented or intersected boundaries and inner material interfaces. The Numerical
Manifold Method (NMM) has recently emerged as a promising method for such modeling, in its ability
to handle boundaries, its flexibility in constructing physical cover functions (continuous or with gradient
jump), its meshing efficiency with a fixed mathematical mesh (covers), its convenience for enhancing
approximation precision, and its integration precision, achieved by simplex integration. In this paper,
we report on developing and comparing two new approaches for boundary constraints using the
NMM, namely a continuous approach with jump functions and a discontinuous approach with
Lagrange multipliers. In the discontinuous Lagrange multiplier method (LMM), the material interfaces
are regarded as discontinuities which divide mathematical covers into different physical covers. We
define and derive stringent forms of Lagrange multipliers to link the divided physical covers, thus satisfy-
ing the continuity requirement of the refraction law. In the continuous Jump Function Method (JFM), the
material interfaces are regarded as inner interfaces contained within physical covers. We briefly define
jump terms to represent the discontinuity of the head gradient across an interface to satisfy the refraction
law. We then make a theoretical comparison between the two approaches in terms of global degrees of
freedom, treatment of multiple material interfaces, treatment of small area, treatment of moving inter-
faces, the feasibility of coupling with mechanical analysis and applicability to other numerical methods.
The newly derived boundary-constraint approaches are coded into a NMM model for groundwater flow
analysis, and tested for precision and efficiency on different simulation examples. We first test the LMM
for a Dirichlet boundary and then test both LMM and JFM for an idealized heterogeneous model, compar-
ing the numerical results with analytical solutions. Then we test both approaches for a heterogeneous
model and compare the results of hydraulic head and specific discharge. We show that both approaches
are suitable for modeling material boundaries, considering high accuracy for the boundary constraints,
the capability to deal with arbitrarily oriented or complexly intersected boundaries, and their efficiency
using a fixed mathematical mesh.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Heterogeneity is a basic, ubiquitous property within various
groundwater systems, one frequently associated with features
such as different geological materials, inclusions, or fractures. In
numerical modeling of groundwater flow in heterogeneous

geological media, material interfaces (including fractures) and
typical Dirichlet, Neumann, or Cauchy boundary conditions are
boundary constraints influencing the existence, uniqueness, and
stability of the numerical solution. A schematic of a groundwater
problem involving strong heterogeneity, including material inter-
faces and various boundary conditions, is shown in Fig. 1. The main
challenges for modeling such a problem are: (1) accurately satisfy-
ing the continuity of both hydraulic head and normal flux across
material interfaces, known as the refraction law [1,2], and (2) the
difficulties related to mesh discretization and numerical conver-
gence associated with singular points, especially if the interfaces
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are geometrically complex and intersecting. According to a recent
review by Cainelli et al. [3], standard continuous methods such
as finite element [4,5] and finite volume [6–8] methods (FEM
and FVM) suffer from accuracy limitations when modeling hetero-
geneous media, including difficulties in the need for continuity of
normal flux across material interfaces. This difficulty has been
addressed by using post-processing techniques (such as in [9–
11]) to enforce the continuity of normal flux after hydraulic head
calculations, though such techniques require several iterations to
achieve convergence. Mathematically, the difficulty in satisfying
the refraction law in standard continuous methods is rooted in lim-
itations related to continuous, nodal-based approximation. In geo-
logical media, the material interfaces may intersect or even move
under deformation, making discretization with a numerical grid
(including adaptive gridding) more complex and computationally
demanding. In this context, new mixed continuous/discontinuous
methods with fixed meshes are promising and might provide a

long-sought breakthrough in modeling groundwater flow in
strongly heterogeneous geological media.

As proposed by Shi [12,13], the Numerical Manifold Method
(NMM) is a promising numerical method for modeling such con-
tinuous/discontinuous media. Development of this method was
motivated by the urgent need for modeling the dynamic processes
of rock deformations spanning both continuous and discontinuous
media using a unified approach, an approach not possible using
continuous methods (such as FEM) or discontinuous methods (such
as the distinct element method). In response to this need, NMM,
based on the theory of mathematical manifolds, has recently been
successfully applied to rock-mechanics analysis of both continuous
and discontinuous geologic media [14]. Numerical grids (or
meshes) in the NMM consist of mathematical and physical covers.
These mathematical covers overlay the entire material domain
and determine the approximation precision by the mesh density,
whereby a finer mesh can achieve a higher precision in the solution.

Notations

f(h) boundary constraints, as a function of hydraulic head h
h hydraulic head
h0 given hydraulic head
hi(x,y) hydraulic head function of physical cover i
hij jth degree of freedom of physical cover i
kn permeability coefficient in the n direction
kf

n permeability coefficient of the material type f in the n
direction

m number of degrees of freedom of physical cover i
nx and ny 2D components of the cosine of the normal vector of

the boundary relative x- and y-axes, respectively
n+ and n�

influx to and outflux from a boundary, respectively
nd total number of degrees of freedom related to material

interfaces
ne(r) number of material interfaces in a physical cover.
qn normal flux across a boundary
�qx and �qy known flux components
sj coefficient of the jth degree of freedom
v velocity vector
wi(x,y) weight function of physical cover i on element e
Cij component of the conductivity matrix
Fj(x,y) function with the features of gradient jump and head

continuity
Jij element of matrix J, representing the contribution of jth

on the ith degree of freedom as jump terms

K tensor of permeability coefficient
Lij element of matrix L, representing the contribution of jth

degree of freedom as jump on ith degree of freedom as
hydraulic head

NðeÞpc number of physical covers related to element e
Qi flux term
Ui geometric range of physical cover i
WD work done by water flow through Dirichlet boundaries
WM work done by fluid flow through material interfaces
WN work done by fluid flow through Neumann boundaries
a contains coefficients of compressibility of media or

water
k Lagrange multiplier
f material type f of a material domain
bi element of matrix b, representing the flux term related

to the ith degree of freedom as jump term
xj(x,y) jump shape function
wj(x,y) jth jump function
uj (x,y) jump amplitude to be solved
/j(xi,yi) normal distance from the ‘‘star’’ of physical cover i to a

material boundary
C material or domain boundary
CD Dirichlet boundary
CM material interface

Fig. 1. (a) A 2D model of water flow under certain boundary conditions in a heterogeneous geological media, consisting of different material domains separated by different
material interfaces, possibly containing a dominant fault or an area with dense fractures; (b) mathematical expressions of the material properties and boundary conditions.
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