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a b s t r a c t

Power law tails, commonly observed in solute breakthrough curves, are notoriously difficult to measure
with confidence as they typically occur at low concentrations. This leads us to ask if other signatures of
anomalous transport can be sought. We develop a general stochastic transport framework and derive
an asymptotic relation between the tail scaling of a breakthrough curve for a conservative tracer at a fixed
downstream position and the scaling of the peak concentration of breakthrough curves as a function of
downstream position, demonstrating that they provide equivalent information. We then quantify the rele-
vant spatiotemporal scales for the emergence of this asymptotic regime, where the relationship holds, and
validate our results in the context of a very simple model that represents transport in an idealized river.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Rivers are the backbone of environmental flows. Distilled rain
water acquires dissolved solutes and suspended particulates as it
travels on hill-slopes. This water discharges into the river network,
where it travels over considerable distances as rivers link
landscapes over continental scales [31]. Rivers also act as filters
by processing and transforming the load they carry, influencing
the biogeochemistry of downstream water bodies [35]. Thus,
understanding the processes responsible for the physical translo-
cation and the biogeochemical transformations of upstream inputs
to downstream outputs is critical to scientists, stakeholders and
decision makers.

Streams and rivers are complex, heterogeneous systems, with
fast surface flow transporting substances quickly in the main
channel and slow boundary layer and subsurface flow retaining
substances for potentially long periods of time. This broad separa-
tion of velocities and associated time scales leads to anomalous
transport, which cannot be adequately described with traditional
one-dimensional Fickian advection dispersion models [33]. The
trapping of solutes in a river’s bed-sediment leads to heavy-tailed
residence times which manifest as power law tails in experimental
breakthrough curves (BTCs) [25]. These heavy tailed BTCs demon-
strate long-term retention of solutes in rivers, which is particularly
important for the many biogeochemical processes that occur in the
slow regions near or inside the river-bed [6,16,26,34].

In traditional tracer tests, a pulse (or drip) of tracer is released
and its concentration over time is measured at some downstream

location(s) to obtain BTCs. The mass of stream-borne dissolved
solutes entering the bed is often only a small fraction of the total
mass and it is further diluted upon return to the open channel.
The signals associated with tracers that have traveled through
the bed therefore appear at very low concentrations in measured
BTCs, often orders of magnitude below peak concentrations [21].
This poses a significant experimental challenge as reliable and suf-
ficiently sensitive measurements can be difficult to obtain. Typical
methods based on electric conductivity resolve only 2 to 3 orders
of magnitude, while fluorescent dies can resolve over 4 orders of
magnitude. Even though isotopic tracers can be very sensitive, up
to 6 orders of magnitude for stable isotopes and 8 or 9 for radioac-
tive tracers, they are seldom used and most experiments only
resolve relatively short timescales [14,40]. Conversely, the peak
concentration of a BTC from a pulse injection is a reliable measure-
ment, because it is typically much larger in magnitude. The change
in peak concentration with downstream distance could therefore
provide reliable evidence of anomalous transport characteristics.

Any apparent mass loss in the BTC of a conservative tracer must
have been retained during transport and should eventually leak
back to the main flow. This would be true for example in flumes,
or rivers on bedrock without connection to a regional aquifer. Even
when there are gains and losses through groundwater exchange,
this concept remains valid so long as a proper mass balance is
enforced [17]. The mass lost from the BTC compared to the mass
actually injected upstream (ignoring the flowpaths bypassing the
sampling location) should thus reappear as a tail if the instruments
have sufficient sensitivity and sampling occurs over sufficiently
long times. We argue that a dynamical relationship therefore exists
between the bulk of the solute, which is transported directly by the
water column in the river, and the solute mass that reenters the
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water column after being retained in the sediment bed. If we con-
sider a BTC measured at a fixed location, the fraction of solute that
has spent a considerable time in the sediment bed will define the
long-time tailing behavior. Since the mass recovered in the tail
was ‘‘lost’’ from the main channel flow, one should expect an
equivalent signal missing from the main pulse, which in turn
should also appear as a faster than expected decay in the peak of
the BTC downstream [4]. Thus, if we consider multiple BTCs mea-
sured at different downstream positions, we may ask the following
question: Given the behavior of the peak value of the BTCs at mul-
tiple positions, can we infer the tailing properties of a single BTC at
a fixed position? This idea is illustrated in Fig. 1. A relationship of
this type would allow one to infer details about the solute trans-
port occurring in the sediment bed from measurements of the bulk
mass transported in the water column. This would provide an
alternative method to assess the behavior of BTC tails through
measurements of peak concentrations.

The present work is structured as follows. Section 2 presents
our model: we derive a general late-time relation between the
scaling of the tail of a BTC for a conservative tracer at a fixed down-
stream position and the scaling of the BTC peak as a function of
downstream position. Section 3 is dedicated to illustrating the gen-
eral results of Section 2 in a concrete scenario, so as to clarify the
roles of the underlying physical processes. For this purpose, in Sec-
tion 3.1 we construct a very simple conceptual model for river
transport, which is deliberately chosen to be simple, yet complex
enough to demonstrate the desired behaviors. We then determine
the relevant spatiotemporal scales for the onset of the asymptotic
scaling behavior in the context of this model, and also discuss the
pre-asymptotic regime. We validate our results using numerical
particle tracking simulations in Section 3.2. An overall discussion
is presented in Section 4.

2. Asymptotic behavior of tail and peak scaling

In order to address the question of the relationship between
peak and tail scaling in BTCs, it is necessary to describe solute
transport in a sufficiently general framework that allows the

relationship between retention in the sediment bed and transport
in the water column to come to light. Particle-based random walk
methods, whether from a theoretical or numerical (particle track-
ing) perspective, have been used extensively to represent solute
transport in flows across a diverse range of hydrologically relevant
flows [27,37]. In particular, the related idea of subordination has
been used to derive results on peak, tail and moment properties
of BTCs for solute transport in heterogeneous porous media [5].
The basic premise of particle-based methods is to discretize the
solute plume into a discrete number of individual particles, each
of which then move based on probabilistic rules that aim to cap-
ture microscopic and macroscopic processes of the system of inter-
est in an effective manner. It is important to note that these
pseudo-particles are abstract theoretical (or numerical) devices
and do not aim to represent actual individual solute particles
[10,15]. They are characterized by effective properties that depend
on the specific solute, flow and background medium. These parti-
cles are tracked as they move due to advection by the background
flow and dispersion according to an appropriate stochastic process
representing the dispersive properties of the solute in a particular
medium. From a numerical standpoint, particle tracking methods
have the benefit of being essentially free of numerical dispersion
[13]. From both the numerical and theoretical point of view, these
methods provide a very flexible framework to represent transport
phenomena, ranging from classical (Gaussian) advective–disper-
sive transport [28] to more general processes [8,9]. The present
work builds on this type of approach to explore peak and tail scal-
ing properties in the context of river and stream transport. Impor-
tantly, these methods take into account stochastic properties in a
natural fashion. Furthermore, they allow us to derive our results
without the necessity of imposing overly restrictive assumptions
on the nature of the transport, and they can thus be applied to a
variety of natural systems.

2.1. Theoretical framework

In classical random walk approaches, time is discretized and all
particles move over a fixed time step according to specific stochas-
tic transport process (e.g. Brownian motion [36], Fickian dispersion
[37]). For our theoretical description, we adopt an alternative view
often called the continuous time random walk [9] whereby we fix a
specified spatial distance along the downstream dimension rather
than fixing the time step. We then ask: what is the probability that
a particle takes a certain amount of time to traverse this fixed
length? In this description, the randomness in the movement of
the particles is encoded in the density of waiting times needed to
traverse this fixed length. For example, when modeling river trans-
port, a particle that travels through the water column will take a
much shorter time to travel a fixed distance than one that is
retained in the sediment bed and later released back into the main
channel. Similar approaches, where a random process is modified
by some waiting time distribution that characterizes an inactive
or immobile phase, can be found in [5,8], which rely more explic-
itly on the related concept of subordination. An overview of the
related approaches of fractional advection–dispersion, subordina-
tion and continuous time random walks can be found in [33]. To
our knowledge, the approach presented here is new in the context
of river and stream solute transport and provides a clear picture of
the physical processes and assumptions involved.

Let us formalize our ideas. We wish to describe the motion of a
particle of solute undertaking random motion starting from a
known position x0 at time t0. Let x be position downstream, and
start by fixing a length l. Assuming that we are interested in
length scales over which the movement of a particle is indepen-
dent of previous history, we can describe the motion of our
particle by:

Fig. 1. Given the behavior of the peak value of the BTCs measured at multiple
downstream positions (decay exponent b), can we infer the tailing properties in
time of a single BTC at a fixed position (decay exponent d)? Given a number of
stations positioned at different downstream positions along a river or stream (left
panel), the temporal tail scaling at each position is expected to follow some power
law scaling t�d at late times (top right panel). We ask the question of whether this
behavior has a discernible signature in the peak decay as a function of downstream
position, where we expect some asymptotic power law scaling x�b (bottom right
panel).
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