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a b s t r a c t

The traditional statistical theory of extreme events assumes an asymptotic regime in which the number
of events per year is large enough for a limiting Generalized Extreme Value distribution to apply. This has
been shown not to be applicable to many practical cases. We introduce here a Metastatistical Extreme
Value (MEV) approach which is defined in terms of the distribution of the statistical parameters describ-
ing ‘‘ordinary’’ daily rainfall occurrence and intensity. The method does not require an asymptotic
assumption, and naturally accounts for the influence of the bulk of the distribution of ordinary events
on the distribution of annual maximum daily rainfall. Building on existing observations showing the dis-
tribution of daily rainfall to be Weibull right-tail equivalent, the MEV approach is then specialized to yield
a compact and easily applicable formulation. We apply this formulation to Monte Carlo experiments
based on Weibull statistics derived from the 3-century long rainfall time series observed in Padova
(Italy). We find an excellent agreement between MEV estimates and the ‘observed’ frequency of occur-
rence of extreme events in the synthetic time series generated. GEV and Gumbel estimates, on the con-
trary, exhibit systematic errors. Tests with different rates of occurrence of rainfall events show slight
improvements of the GEV and Gumbel estimation bias when the number of events/year is increased.
However, a constant bias in GEV and Gumbel estimates is seen for (synthetic) climates where the number
of events and the distribution of intensities is varied stochastically. The estimation root mean square
error is also larger for the GEV and Gumbel distributions than for the MEV approach. Hence, GEV and
Gumbel quantile estimates are more likely to be further away from the actual value than MEV estimates.
Finally, the application of the new MEV approach to subsets of the long Padova time series identifies
marked variabilities in rainfall extremes at the centennial time scale.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The definition and estimation of extreme rainfall events is of
central importance in the analysis of past and projected rainfall
regimes, as well as in the design of any water resources manage-
ment and flood control infrastructure. For a given event duration
of interest (here we will focus on the important case of daily dura-
tion), extreme value analysis usually studies the distribution of
yearly maxima, y, either directly or by considering the distribution
of rainfall values over a high threshold [1]. Under the assumptions
that (i) rainfall intensity may be assumed independent and identi-
cally distributed (i.i.d.) and (ii) the number of events per year tends
to infinity, the classical Extreme Value Theory (EVT) identifies a
Generalized Extreme Value (GEV) distribution of yearly maxima

[2–6], which has been and still is widely applied [[7–12], e.g.]. It
is important to emphasize here that the GEV is not an exact dis-
tribution of yearly maxima, and that the actual extreme value dis-
tribution may converge to a GEV distribution only as the number of
events/year is ‘‘large enough’’, a potentially problematic concept as
the number of events/year (wet days in the present case) is
necessarily limited. However, little work has addressed the condi-
tions under which the actual distribution may be considered to be
close to the limiting GEV form [13,14, e.g.] or how the possible
variability of the rainfall depth distribution (i.e. a violation of the
i.i.d. hypothesis e.g. due to seasonality), can affect the resulting
extreme value distribution [15]. These analyses show that indeed
the actual extreme value distribution of rainfall may in practice
be quite far from the asymptotic GEV form.

We propose here a non-asymptotic approach to the definition
and evaluation of an extreme value distribution based on a metas-
tatistical approach (also referred to as superstatistics [16], com-
pound distributions [17], or doubly stochastic processes [18] in
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different contexts). Our approach avoids the need of assuming an
infinite collection of events, i.e. it avoids the asymptotic assump-
tion, and allows for interannual variability to be accounted for.

The manuscript is organized as follows. In Section 2 we describe
the data used in our analyses. In Section 3 we briefly summarize
the classical extreme event theory and introduce the new
Metastatistical Extreme Value formulation (MEV). A Results sec-
tion compares GEV and MEV performances, and a Discussion and
Conclusion section closes the paper.

2. Data

We analyze extremes in the daily rainfall time series observed
in Padova (Italy) over a span of almost three centuries, as well as
on synthetic data derived from its statistical properties. The
Padova dataset, comprised of 275 complete years of daily observa-
tions is described in detail elsewhere [19,20], and provides an
exceptionally long record, particularly suitable to test estimates
of high return period extremes.

3. Methods

We first briefly summarize the EVT, as typically used in hydrol-
ogy, and then introduce a metastatical approach to the definition of
extreme value distributions.

3.1. Extreme value theorem

We use the random variable X > 0 to indicate daily rainfall
depth, f ðxÞ being its probability density function, FðxÞ ¼ PðX 6 xÞ
its cumulative distribution function, and WðxÞ ¼ 1� FðxÞ the excee-
dance probability. Notice that having considered X > 0, no proba-
bility atom at X ¼ 0 need be considered to represent the finite
probability of zero rainfall. The maximum of n realizations of the
stochastic variable X;Yn ¼maxðx1; x2; . . . ; xnÞ, is also a random vari-
able, often termed an n-maximum or a maximum with cardinality
n of the ‘‘parent’’ stochastic variable. In hydrologic practice n will
be the number of wet days in a given year, itself a discrete random
variable. If the events generating the n realizations of X are
independent, the cumulative distribution, HnðyÞ, of Yn may be
expressed as

HnðyÞ ¼ ½FðyÞ�n ð1Þ

Upon definition of a renormalized variable Sn ¼ ðYn � bnÞ=an (an > 0
and bn being constants), the EVT establishes that [2–4]

lim
n!1

PðSn < sÞ ¼ lim
n!1

HnðsÞ ¼ lim
n!1
½Fðan � sþ bnÞ�n ¼ HðsÞ ð2Þ

The limiting distribution HðsÞ in Eq. (2), depending on the tail
behaviour of WðyÞ, can only be one of three distributions: (i) the
Gumbel distribution (Extreme Value 1 – EV1, or double exponen-
tial), when the tail of WðyÞ decreases faster than a power law; (ii)
the Frechét distribution (EV2), when the tail of WðyÞ behaves as a
power law for large values of x; and (iii) the Weibull distribution
(EV3), when x has a finite upper limit [2–4].

In terms of the non renormalized variable y, the three asymp-
totic types, EV1–EV3, can be thought of as special cases of a single
Generalized Extreme Value distribution [6]:

HGEVðyÞ ¼ exp � 1þ k
y� l

r

� ��1=k

þ

� �
ð3Þ

where ð�Þþ ¼maxð�; 0Þ;l is the location parameter, r > 0 is the
scale parameter, and k is a shape parameter. The limit k ¼ 0 corre-
sponds to the EV1 distribution, k > 0 to the EV2 distribution, and
k < 0 to the EV3 distribution.

As noted, the distribution describing the n-sample maximum
will strictly be a GEV distribution, independent of the specific value
n, only for ‘large enough’ values of the number of wet days. When
the number of wet days n is not large enough for the asymptotic
regime of the EVT to apply (e.g. this has been shown to be the case
in practice for Weibull variates [13,21]) one must use Eq. (1).
However, a useful approximation of HnðyÞ that does not require
n!1 can be obtained by considering Un, the expected largest
value of the variable X in n realizations. Because Un is on average
exceeded once every n realizations of X [22,23]:

WðUnÞ ¼
1
n

ð4Þ

(note that a Weibull plotting position estimate, WðUnÞ ¼ 1=ðnþ 1Þ,
could also be used with no consequence of substance). Using this
result we can rewrite the cumulative probability for the n-sample
maximum Yn as

HnðyÞ ¼ ½FðyÞ�n ¼ ½1�WðyÞ�n ¼ 1� WðyÞ
nWðUnÞ

� �n

ð5Þ

For y > Un (i.e. for an extreme value larger than the average maxi-
mum value in the observations) the term WðyÞ=WðUnÞ < 1.
Therefore, for large values of y, i.e. for extremes, we can use the
Cauchy approximation: ð1� zÞn ffi 1� n � z ffi expð�n � zÞ, valid for
z� 1. Hence, Eq. (5) can be approximated as:

HnðyÞ ¼ exp � WðyÞ
WðUnÞ

� 	
ð6Þ

Eq. (6) is sometimes referred to as the ‘‘penultimate’’ approx-
imation [24,22], the ‘‘ultimate’’ approximation being Eq. (2), only
valid when n is very large. The error associated with the penultimate
approximation can be quantified through the relative error eðyÞ ¼
f½expð�WðyÞ=WðUnÞ�� ½1�WðyÞ=ðnWðUnÞÞ�ng=½1�WðyÞ= ðnWðUnÞÞ�n.
For y¼Un [24]: eðUnÞ¼ ðexpð�1Þ� ½1�1=n�nÞ=½1�1=n�n. For exam-
ple, for n¼50 the relative error is eðU50Þ¼ 0:01. Note that for values
y>Un, of greatest applicative interest, the relative error is smaller
than eðUnÞ, as WðyÞ<WðUnÞ. The penultimate approximation has
been used in the evaluation of extreme values in some geophysical
contexts, such as in modelling wind power [24,23] or of drought
severity [25], but very rarely has it been applied to rainfall extremes
[26,15].

3.2. The case of Weibull variates

Daily rainfall as been shown to be accurately modelled as a
Weibull variate [27]. Hence we consider here the important case
of WðxÞ ¼ expð�ðx=CÞwÞ. Under these assumptions, the yearly
maximum daily rainfall depth, i.e. the maximum depth over the
n wet days occurred in a generic year, is distributed as:

HnðyÞ ¼ 1� exp � y
C

� �w
� 	� �n

ð7Þ

Hence, the penultimate approximation takes the following forms:

HnðyÞ ffi 1� n � exp � yw

Cw

� 	� �
ffi exp � exp � yw

Cw þ ln n
� 	� �

ð8Þ

Note that these expressions (and later results in this Section) are
valid also for distributions that are only right-tail equivalent to a
Weibull distribution [24,27] (two distributions F1 and F2 are
right-tail equivalent if ð1� F1ðxÞÞ=ð1� F2ðxÞÞ ! 1 when x! þ1).

3.3. A metastatistical approach

The cumulative probability, HnðyÞ, of the n-maximum Yn

depends on the number of wet days, n, and on the parameters,
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