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a b s t r a c t

Numerical inversion is required when Laplace transform cannot be inverted analytically by manipulating
tabled formulas of special cases. However, the numerical inverse Laplace transform is generally an ill-
posed problem, and there is no universal method which works well for all problems. In this study, we
selected seven commonly used numerical inverse Laplace transform methods to evaluate their perfor-
mance for dealing with solute transport in the subsurface under uniform or radial flow condition. Such
seven methods included the Stehfest, the de Hoog, the Honig–Hirdes, the Talbot, the Weeks, the Simon
and the Zakian methods. We specifically investigated the optimal free parameters of each method,
including the number of terms used in the summation and the numerical tolerance. This study revealed
that some commonly recommended values of the free parameters in previous studies did not work very
well, especially for the advection-dominated problems. Instead, we recommended new values of the free
parameters for some methods after testing their robustness. For the radial dispersion, the de Hoog, the
Talbot, and the Simon methods worked very well, regardless of the dispersion-dominated or advec-
tion-dominated situations. The Weeks method can be used to solve the dispersion-dominated problems,
but not the advection-dominated problems. The Stehfest, the Honig–Hirdes, and the Zakian methods
were recommended for the dispersion-dominated problems. The Zakian method was efficient, while
the de Hoog method was time-consuming under radial flow condition. Under the uniform flow condition,
all the methods could present somewhat similar results when the free parameters were given proper
values for dispersion-dominated problems; while only the Simon method, the Weeks method, and the
de Hoog method worked well for advection-dominated problems.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Advection–dispersion equation (ADE) has been widely used to
describe the solute transport processes like the contaminant or tra-
cer transport in the porous media [1], heat transport in geothermal
reservoirs [2,3], and so on. To investigate the behaviors of such
substances transport in the subsurface either under a uniform or
radial flow field, the Laplace transform method becomes one of
the most powerful tools. However, the analytical inverse Laplace
transform is generally too difficult to carry out in the closed-from
fashion, because of the complicated forms of the solutions in the
Laplace domain. Alternatively, the numerical method is called in
to conduct the inverse Laplace transform.

For the solute transport in a radial flow field (radial dispersion),
one unique feature is that the Peclet number (Pe) is greatest around
the injecting (or pumping) well screen and decreases with radial
distance from such a well, where Pe is defined as the ratio of the
rate of advection of a physical quantity by the flow to the rate of
dispersion of the same quantity driven by the gradient. Moench
and Ogata [4], and Chen [5,6] applied the Stehfest method [7,8]
to numerically invert the solutions of radial transport in the
Laplace domain, and found that the Stehfest method was suitable
for solving such problems. Subsequently, Chen [6] and Moench
[9] pointed out that the Stehfest algorithm could not perform well
for solute transport problems with large Pe. This is because ADE
becomes a hyperbolic equation from the parabolic equation when
advection is dominating. Chen [10,11], Chen et al. [12], Chen et al.
[13], and Liu et al. [14] introduced the Crump technique [15] for
the inverse Laplace transform. This method employed the epsilon
algorithm to calculate the real part of the complex Fourier series
when conducting the integral of the inverse Laplace transform.
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de Hoog et al. [16] improved the Crump method using either the
epsilon algorithm or the quotient difference algorithm to compute
the full complex Fourier series, and accelerated the convergence of
the series. This method was used to conduct the inverse Laplace
transform for radial dispersion by Chen et al. [17] and Moench
[9]. Moench [18] pointed out that the Talbot [19] algorithm worked
very well for Pe smaller than 100, but might become unstable
when the function being inverted had a steep front. For the uni-
form flow field where the Pe is spatially constant, Bullivant and
O’Sullivan [20], and Zhan et al. [21,22] employed the Stehfest
method to carry out the numerical inverse Laplace transform;
Cornaton and Perrochet [23] and Leij et al. [24] used the Crump
[15] technique for the inverse Laplace transform; Schwartz et al.
[25] used the Weeks method; Leij et al. [24], Leij and van
Genuchten [26] and Gao et al. [27] applied the de Hoog algorithm
for the inverse Laplace transform.

Actually, except for the Stehfest, the Crump, the de Hoog, and
the Talbot algorithms, there are numerous other methods
developed for numerical inverse Laplace transform, such as the
Post [28,29], the Papoulis [30], the Weeks [31], the Schapery
[32], the Zakian [33], the Piessens [34], and so on, which received
less attention before in the literature.

In order to figure out the efficiency and accuracy of above men-
tioned inverse methods, many scientists investigated them
through various types of functions, such as Davies and Martin
[35], Abate and Whitt [36], Duffy [37], Abate and Whitt [38], Abate
et al. [39], Valkó and Abate [40], Cohen [41], Machado [42],
Hassanzadeh and Pooladi-Darvish [43] and so on, where the books
of Abate et al. [39] and Cohen [41] might be the most comprehen-
sive in the recent studies. One common conclusion was that the
numerical inverse Laplace transform was generally an ill-posed
problem, and there was no universal method which worked well
for all problems [41]. For instance, Hassanzadeh and Pooladi-Dar-
vish [43] thought that the Fourier transform inversion method
was the most powerful but also the most computationally expen-
sive one. They showed that the Stehfest method provided accurate
results when the solutions behaved like exp(�t) type of functions
where t was time, but failed when the solution was like exp(t),
sinusoid, or wave type of functions [43]. Duffy [37] found that
the methods developed by Zakian [33], Honig and Hirdes [44,45],
and Talbot [19] could give accurate results, while the application

range of the Talbot algorithm was wider since it contained an
optimized method for choosing the required free parameters.
Abate and Whitt [36] reviewed a few specific variants of the
Fourier-series method for calculating cumulative distribution func-
tions and probability mass functions. He pointed out that the
Fourier-series method was an excellent candidate for performing
numerical transform inversion, and the Weeks method was also
a good choice. Abate and Valkó [46] presented two such
procedures of inverse Laplace transform, the Gaver–Wynn–Rho
algorithm and the fixed Talbot method, and pointed out that both
worked very well for inversion when using multi-precision
computing. Recently, several studies showed that various
numerical inverse Laplace transform methods may be put into
the same mathematical framework [47,48]. For example, Abate
and Whitt [48] proposed an unified framework and pointed out
that the Stehfest algorithm, a version of the Fourier-series method
with the Euler summation, and a version of the Talbot algorithm
could fit into their unified framework.

Most studies mentioned above reviewed the accuracy of the
Laplace transform methods through a standard approach, in which
a numerical inversion scheme was tested using some specific func-
tions, whose inverse were known exactly. Although this approach
was acceptable to evaluate a new developing scheme, it did not
help for some problems when the solution cannot be expressed
by the known inverse Laplace transform functions. For example,
the closed-form solution cannot be derived easily for most Bound-
ary Value Problems (BVP) concerning the radial dispersion. Chen
[49] employed the complex variables to conduct the inverse
Laplace transform of a radial dispersion BVP. Such approaches con-
tained integrals, which cannot be determined easily due to the
oscillating behavior of the integrands [50,51]. Chiang [52] tested
the four inverse Laplace transform methods (Stehfest, Crump,
Weeks and Talbot methods) against the semi-analytical solutions
by Chen [49], and concluded that the Stehfest method could yield
accurate results at early time, but started to generate oscillating
(and unrealistic) solutions at late stage. The other three methods
worked very well regardless of the early and late stages.

In this study, the numerical accuracy and the computational
efficiency of the inverse Laplace transform methods will be tested
for the problems related to solute transport either under a uniform
or radial flow field. Finite-element numerical solutions will be

Nomenclature

aj Taylor coefficient [dimensionless]
g scale factor [dimensionless]
af free constant parameter [dimensionless]
Ai Airy function
B vertical aquifer thickness [L]
C resident concentration in the aquifer [M/L3]
C0 resident concentration at the injection well [M/L3]
D0a effective diffusion coefficient of the aquifer [L2/T]
DL longitudinal hydrodynamic dispersion coefficient [L2/T]
Dr radial dispersion coefficient [L2/T]
erfc() complementary error function
f(t) real-time domain function
~f ðtÞ numerical approximation to the exact inverse f(t)
F(s) corresponded function of f(t) in Laplace domain
H(x) unit step function
i

ffiffiffiffiffiffiffi
�1
p

K an integer [dimensionless]
K1/3 modified Bessel functions of the second kind, 1/3 order
Lj() jth Laguerre polynomial [dimensionless]

N number of terms used in the summation [dimensionless]
Pe Peclet number [dimensionless]
Q injection rate (positive) [L3/T]
r radial distance from the center of the well [L]
rw radius of the well [L]
s Laplace variable
t time [T]
tmax largest value of t for which one could evaluate the func-

tion of f(t)
T time interval in the jth time subsection [T]
v flow velocity [L/T]
x distance [L]
r arbitrary real value greater than the real parts of all the

singularities of F(s)
r0 Laplace convergence abscissa [dimensionless]
a free parameter needed to be optimized [dimensionless]
ar radial dispersivity of the aquifer [L]
h porosity of the aquifer [dimensionless]
s numerical tolerance [dimensionless]
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