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a b s t r a c t

Large-scale hydraulic models are able to predict flood characteristics, and are being used in forecasting
applications. In this work, the potential value of satellite observations to initialize hydraulic forecasts
is explored, using the Ensemble Sensitivity method. The impact estimation is based on the Local Ensem-
ble Transform Kalman Filter, allowing for the forecast error reductions to be computed without additional
model runs. The experimental design consisted of two configurations of the LISFLOOD-FP model over the
Ohio River basin: a baseline simulation represents a ‘‘best effort’’ model using observations for parame-
ters and boundary conditions, whereas the second simulation consists of erroneous parameters and
boundary conditions. Results showed that the forecast skill was improved for water heights up to lead
times of 11 days (error reductions ranged from 0.2 to 0.6 m/km), while even partial observations of the
river contained information for the entire river’s water surface profile and allowed forecasting 5 to 7 days
ahead. Moreover, water height observations had a negative impact on discharge forecasts for longer lead
times although they did improve forecast skill for 1 and 3 days (up to 60 m3=s=km). Lastly, the inundated
area forecast errors were reduced overall for all examined lead times. Albeit, when examining a specific
flood event the limitations of predictability were revealed suggesting that model errors or inflows were
more important than initial conditions.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Movement of water through rivers and adjacent floodplains
impacts greatly on various ecosystems and the biogeochemical
cycle. At times and in many places around the world, high river
flow and floodplain inundation poses a serious risk to human pop-
ulation. In developed countries observation networks and hydro-
dynamic modeling efforts help understand and predict water
flow but over large scales, hydrodynamic processes are still poorly
understood primarily because of a lack of adequate data and mod-
els [1]. In areas where there is a dense river gauging network, chan-
nel survey data and fine resolution floodplain topographic data,
flood risk mapping as well as flood forecasting is commonly per-
formed using hydraulic models; however in many locations around
the world modeling and forecasting efforts are still limited and sat-
ellites provide currently one of the only means to infer information
about hydrodynamic processes and build reliable models. Data
assimilation algorithms can merge observations with models, pro-
viding optimal estimates of flood characteristics by taking into

account the errors in both models and observations [2]. Forecasting
in river hydraulics depends on the projected inflows but also on
the accuracy of the initial conditions [3], and therefore data assim-
ilation can benefit forecast skill by improving its initialization. Pre-
vious studies have shown that the ingestion of observations into a
river hydraulic modeling system have improved its performance
both in terms of reanalysis [e.g. 4,5] and forecasting [e.g. 6–8]. Nev-
ertheless, there is a need to quantify the impact of any assimilated
observations on forecasting and more generally on the model fidel-
ity and value of the observational system (e.g. measurement
network).

The impact of the assimilated observations can be estimated via
data-exclusion experiments, wherein part of the observations are
not used and the results (i.e. forecast skill) are then compared with
the experiment that used the entire set of available observations
[e.g. 9]. Langland and Baker [10] developed a technique to estimate
the impact of observations using the adjoint of the forecast model,
i.e. without the need to re-run the model for each observation sub-
set. The adjoint-based method allowed the quantification of the
observation impact separately according to observed variable, sen-
sor, and location. Despite these methods being successful at esti-
mating the observation impact, they are limited by the validity of
the adjoint models as well as other approximations [11]. Liu and

http://dx.doi.org/10.1016/j.advwatres.2014.06.006
0309-1708/� 2014 Elsevier Ltd. All rights reserved.

⇑ Corresponding author at: Jet Propulsion Laboratory, 4800 Oak Grove Dr.,
Pasadena, CA 91109, United States. Tel.: +1 8183544478.

E-mail address: kandread@jpl.nasa.gov (K.M. Andreadis).

Advances in Water Resources 73 (2014) 44–54

Contents lists available at ScienceDirect

Advances in Water Resources

journal homepage: www.elsevier .com/ locate/advwatres

http://crossmark.crossref.org/dialog/?doi=10.1016/j.advwatres.2014.06.006&domain=pdf
http://dx.doi.org/10.1016/j.advwatres.2014.06.006
mailto:kandread@jpl.nasa.gov
http://dx.doi.org/10.1016/j.advwatres.2014.06.006
http://www.sciencedirect.com/science/journal/03091708
http://www.elsevier.com/locate/advwatres


Kalnay [12] proposed a method that does not require an adjoint
model, but rather uses an ensemble of model forecasts and a ver-
sion of the Ensemble Kalman Filter. The method, termed Ensemble
Sensitivity (ES), yields similar results to the adjoint-based method
but proved more robust probably due to the nonlinearities cap-
tured by the forecast ensemble.

The objective of this study is to evaluate the impact of satellite
observations on the predictability (or forecast skill) of large-scale
hydraulic models. The observation impact is assessed by adapting
the ES method to a river hydraulic modeling context over a large-
scale river basin. Although the observations assimilated are
synthetic, they are generated with specific satellite missions (both
current and proposed) in mind. The hydrodynamic model that lies
at the core of the forecasting system, along with the ES method and
the experimental design are described in Section 2. Results are
presented in Section 3, while Section 4 provides a summary and
discussion of the implications of the work presented.

2. Methods

2.1. Ensemble Sensitivity

In order to evaluate the impact of observations on the forecast
accuracy of a large-scale hydraulic model, a cost functional is
derived and its sensitivity to the assimilated observations at the
forecast initialization time is calculated [10]. Let t0 be the time
when an observation is available and also the initialization time
for the forecast. The forecasts produced for time t (t � t0 is equal
to the forecast lead time) consist of two model trajectories
(Fig. 1), initialized at the observation time t0 (i.e. benefiting from
the assimilation of the observations) and at a time prior to t0

(labeled t�1) containing no information from the available observa-
tions. The corresponding forecast errors are defined as

etj0 ¼ xf
tj0 � xa

t ð1Þ

etj�1 ¼ xf
tj�1 � xa

t ð2Þ

where xf
tj�1 is the forecast without any assimilation, xf

tj0 is the fore-
cast with assimilation, and xa

t is the verification at the forecast time
that can be either an actual measurement or the analysis at time t
(implicitly assumed to be more accurate than both forecasts).

The cost function that measures the reduction in the forecast
error due to the assimilation at time t0, i.e. the observation impact,
is defined as

J ¼ 1
2

eT
tj0etj0 � eT

tj�1etj�1

� �
ð3Þ

The cost functional at time t is the difference of the squared forecast
errors (L2 norm) between the forecast that is initialized at time t0

(observation time, i.e. the forecast benefits from the assimilation)

and the forecast that is initialized at t�1 (does not benefit from
the assimilation of any observation).

Let yo
0 be the observations at t0, and define the observation

increments as v0 ¼ yo
0 � Hðxf

0j�1Þ. Substituting the definitions of
the forecast errors (Eq. (2)) into Eq. (3), the cost functional is
rewritten as

J ¼ 1
2

2etj�1 þ xf
tj0 � xf

tj�1

� �T
xf

tj0 � xf
tj�1

� �
ð4Þ

Utilizing the Local Ensemble Transform Kalman Filter (LETKF) [13]
analysis formulation, the rightmost term in Eq. (4) can be rewritten
as

xf
tj0 � xf

tj�1 � Xf
tj�1
eK 0v0 ð5Þ

where Xf
tj�1 is a matrix containing the forecast ensemble perturba-

tions dxf ;i
tj�1 ¼ xf ;i

tj�1 � xf
tj�1, and eK 0 is the Kalman gain matrix (dimen-

sionality of ensemble size � number of observations) given by

eK 0 ¼ ðn� 1ÞI þ HXb
� �T

R�1 HXb
� �� ��1

HXf
� �T

R�1 ð6Þ

where n is the ensemble size, H is the observation operator (i.e. HXb

is a matrix containing the predicted measurements), R is the obser-
vation error covariance matrix, Xb is the background state perturba-
tion matrix (state during the assimilation time t0). Substituting Eq.
(5) into Eq. (4), the cost functional that represents the sensitivity of
the forecast skill to the observations can be expressed as (see
[12,14] for additional details)

J ¼ v0; eK T
0XfT

tj�1ðetj�1 þ
1
2

Xf
tj�1
eK 0v0Þ

� �
ð7Þ

or

J ¼ etj�1 þ
1
2

Xf
tj�1
eK 0v0

� �T

Xf
tj�1
eK 0v0 ð8Þ

Each term in Eq. (8) can be calculated from the ensemble of
forecasts initialized at time t�1, which avoids the need for generat-
ing forecasts after assimilating any observation (i.e. xf

tj0). The cost
functional can be computed for each time an observation is avail-
able and different lead times by selecting the appropriate t and t0

times for the forecasts and observations.

2.2. Experimental design

The experimental design is based on a fraternal twin synthetic
experiment [15], in which a control simulation that produces
hydrodynamic states and fluxes such as water surface elevation
(WSE) and flood extent is designated as ‘‘truth’’. These ‘‘true’’ fields
are then sampled to generate synthetic observations that have the
same spatial, temporal and error characteristics as the sensor
whose observations are being emulated. Another simulation, the
open-loop or first-guess, uses the same model albeit corrupted
by errors manifested either from erroneous model forcings (e.g.
boundary inflows), model parameters (e.g. channel roughness) or
model initialization. The open-loop simulation represents our
uncertain knowledge of the ‘‘true’’ hydraulic variables, and are
used to initialize the open-loop forecasts that do not benefit from
the satellite observations. In contrast, the assimilated forecasts
are initialized after the observations have been assimilated into
the open-loop model but are forced with the open-loop forecast
inflows. The only difference between the open-loop and assimi-
lated forecasts then are the initial conditions, allowing for the eval-
uation of the observation impact on the forecasts. The evaluation of
the forecast skill was done in terms of WSE, discharge and inun-
dated area which are variables that govern flood characteristics.
Although the synthetic observations do not correspond to any

Fig. 1. Schematic of forecast model trajectories with definitions of initialization/
assimilation and forecast times (adapted from [10]).
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