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a b s t r a c t

Vegetation-induced flow roughness can result in significant changes in stream hydraulics. This study
revisits the well-known empirical equation for submerged flexible vegetation developed by Kouwen
and collaborators, which describes the relationships between shear stress, flexural rigidity, and vegeta-
tion deflection. Theoretical analysis shows that the theories for the mechanics of large deflection canti-
lever beams can essentially explain this equation. The results show that for moderate to large
deflection (the ratio of deflected height to original height l/L < 0.85 � 0.9) the theoretically derived rela-
tionships can be approximated with power-law equations, which have similar exponents to the Kouwen’s
equation and agree with its empirical relationships, which indicates the consistency of the underlying
physics for the two approaches. Direct comparisons under given vegetation-height conditions also show
a general agreement between the empirical and the theoretical equations. For small deflections, the the-
oretical results exhibit a more intuitive trend, which shows that the shear stress approaches zero at infin-
itesimal deflection. Additionally, theoretical analysis suggests a different non-dimensional parameter for
vegetation mechanical properties and a better structure of the equation, which is expected to improve
the estimation of vegetation-induced roughness. Finally, theoretical analysis indicates that even though
the structure maintains, the specific relationship between vegetation bending and resistance is depen-
dent on the flow velocity profile. Further development of these approaches need to take flow character-
istics into consideration.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Vegetation introduces additional resistance to streamflow and
potentially changes stream hydrodynamics and flood inundation
risks. Flow roughness caused by vegetation has been studied for
several decades and various approaches have been developed.
For submerged, grass-type vegetation, the equation proposed by
Kouwen and collaborators is widely adopted. This equation was
developed based on concepts in mechanics of material and fluid.
Kouwen and Unny [1] proposed to use the quantity MEI to describe
the flexural rigidity, or stiffness, of vegetation in a unit area, where
M [�] represents the stem density defined by these authors as the
number of stems in 1 m2, E [kg m�1 s�2] is Young’s modulus of the
plant, and I [m4] is the area moment of inertia. Based on
dimensional analysis, they proposed a non-dimensional variable

MEI
chS

� �0:25
�

L and linked it to vegetation bending described by l/L,

where c is the specific gravity of water, h is the flow depth, S is
the friction slope, and L and l are the original and deflected heights
of the plant. In this equation, chS is the flow shear stress that intro-
duces the resistance into the equation. Through flume experi-
ments, these authors determined an empirical relationship
between these two variables. Kouwen and Li [2] reformulated this
relationship and presented the following equation:

MEI
chS

� �0:25
,

L ¼ 3:4
l
L

� �0:63

ð1Þ

The concept of flexural rigidity and the resulting vegetation-
bending resistance equations (Eq. (1) and its earlier version by
Kouwen and Unny [1]) have been widely applied in the literature
e.g. [3–10] for studying flexible-vegetation-induced flow
roughness.

Although Kouwen’s approach is an empirical relationship, it
introduces mechanical concepts into the vegetation resistance
study that allow for fully understanding the detailed mechanics
of the interaction between fluid and flexible vegetation. A complete
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view of this system should include not only the flow characteris-
tics, but also the biomechanical properties and responses of the
vegetation. Therefore, using these mechanical concepts may lead
to better quantification to the coupled system and may result in
new approaches for dynamic flow resistance that account for
changing flow resistance with the continuous deformation of veg-
etation. After reviewing the development of this approach, we are
interested in exploring the following question in regards to the
fundamental mechanism of the approach: in view of the physical
basis of Eq. (1), can this equation be explained with a more
physically rigorous approach? Answering this question will help
advance the development of physically based approaches for
vegetation resistance.

2. Theoretical analysis

In this section, we discuss whether we can explain the Kouwen
relationship (Eq. (1)) with mechanical theories. The main assump-
tions adopted in the development of Eq. (1) include: vegetation
bending is caused by the drag force; drag force is the dominant
component in the flow resistance when a large number of plant
stems appear; and the total drag force is the sum of the drag force
for each individual plant.

Taking a closer look at Eq. (1), we find that it describes the rela-
tionships between shear stress, vegetation elastic rigidity, and veg-
etation deflection. In densely vegetated areas, the shear stress is
mainly caused by the drag force on vegetation [11]. Essentially,
Eq. (1) determines the balance between bending force and deflec-
tion for vertically placed cantilever beams. Therefore, we can use a
theoretical approach to address the problem.

For a homogeneous grass-type vegetation field, we assume that
each individual plant behaves independently and similarly in a
uniform flow field. Therefore, the total resistance induced by veg-
etation is simply the sum of drag forces on all individual plants (see
Fig. 1 for a schematic). We assume that the wake effect on each
plant is equal in a large homogeneously vegetated area and that
it can be accounted for in a known uniform velocity field and drag
coefficient distribution. Based on this assumption, the result for the
entire vegetated area can be scaled up by multiplying the stem
density to the single-stem result. Therefore we start from the sin-
gle-plant bending problem that is described well by the large
deflection cantilever beam theory, which relates the deflection of
the plant to the external load, which is mainly the drag.
Under the assumption that the beam material remains linearly
elastic, the Euler–Bernoulli equation for bending reads [12,13]:

dh
ds
¼ MlðsÞ

EI
ð2Þ

where h is the angle of rotation of the deflection curve, s is the dis-
tance measured along the beam, Ml is the moment of the load, E is
the modulus of elasticity of the material and I is the second moment
of area of the beam cross section about the bending axis.

Chen [14] converted this equation into the following form:

ds
dy
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� G2ðyÞ
q ð3Þ

where y is the vertical coordinate parallel to the undeflected beam,
G(y) is defined by:

GðyÞ ¼
Z y

0

MlðyÞ
EI

dy ð4Þ

This is a general equation applicable for arbitrary loads and
beam mechanical properties, and thus can be easily applied for
theoretical analysis.

With simple load conditions, G(y) can be explicitly formulated.
For a uniformly distributed load, MlðyÞ ¼ FD

l ðl� yÞ2, where FD is the
total load exerted over the deflected beam height l, and
GðyÞ ¼ FD=l

2EI
y3

3 � ly2 þ l2y
� �

. Eq. (3) can then be converted to a
non-dimensional form:

ds�
dy�
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2

4
y3
�

3l�
� y2

� þ l�y�
� �2

r ð5Þ

B.C: s� ¼ 1 at y� ¼ l�.
where parameter r ¼ FDL2

EI , l⁄ = l/L, and L is the undeflected beam
length. The parameter r describes the ratio of external load and
beam rigidity.

Similarly, with a concentrated load FD applied to the free end of
the beam, Eq. (3) can be converted to:

ds�
dy�
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2 l�y� � y2
�

2

� �2
r ð6Þ

Eqs. (5) and (6) suggest that the deflection of a cantilever beam
with a load that is normal to the undeflected beam can be deter-
mined by a single parameter, r. Therefore, we can examine these
non-dimensional equations to determine the relationship between
vertical deflection l/L and the parameter r (i.e., r ¼ f ðl=LÞ, which is
similar to Eq. (1)).

For a vegetation cluster, we can scale up the analysis for a single
plant and express r using the bulk resistance and bulk rigidity. In a
densely vegetated area, the flow resistance caused by shear stress
at a solid boundary is negligible. The drag force dominates the total
shear stress so that s ¼ chS ffiWFD, where the stem density W [L�2]
has the similar physical meaning to Kouwen’s M [�], which, how-
ever, is a dimensionless parameter. Nevertheless, M is linked to the
length scale (i.e., its value changes with different length units)
whereas W is independent of it. This makes W a more suitable
parameter for the analysis. Therefore, r also reads r ¼ sL2

WEI, in which
WEI represents the vegetation rigidity in a unit area.

These two load distributions are limiting conditions for most
real cases. In other words, the vertical distribution of the actual
load on a plant in water flow usually lies between these two distri-
butions. Therefore, we can examine the relationship between
deflection and shear stress by solving these two cases.

The two ODEs (Eqs. (5) and (6)) can be solved with a straightfor-
ward search procedure [14]. For a given r, a value of the deflected
height l⁄o can be assumed and the equations can be numerically
solved to obtain the entire bending curve, as well as the total
deflection l⁄. When l⁄ matches l⁄o, the solution is found. We can
search the value of l⁄ over [0,1] to determine l⁄ for the solution
of the problem. The results are presented in Fig. 2, which show that
different load distributions result in different relationships.

We can use empirical equations to approximate these curves for
further analysis. A piecewise equation was found to be more suit-
able for these curves than a single power-law relationship. This can
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Fig. 1. A schematic view of a submerged plant in a real flow field.
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