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a b s t r a c t

A new benchmark semi-analytical solution is proposed for the verification of density-driven flow codes.
The problem deals with a synthetic square porous cavity subject to different salt concentrations at its ver-
tical walls. A steady state semi-analytical solution is investigated using the Fourier–Galerkin method.
Contrarily to the standard Henry problem, the cavity benchmark allows high truncation orders in the
Fourier series and provides semi-analytical solutions for very small diffusion cases. The problem is also
investigated numerically to validate the semi-analytical solution. The obtained results represent a set
of new test case high quality data that can be effectively used for benchmarking density-driven flow
codes.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Numerical models are considered as irreplaceable tools for the
modeling of density-driven flow in porous media [15,22,33,35,
39,51,55,57]. They are used for a variety of analyses including sea-
water intrusion in coastal aquifers, saltwater fingering under sab-
kha and playa lakes, flow around salt domes as the nuclear waste
repositories and saltwater upconing under freshwater lenses. The
development and the use of these models require a preliminary
validation step to confirm that the nonlinear governing equations
are correctly solved. This step is often performed by comparing
the results of the numerical models with those of existing bench-
mark problems. In the literature, a number of benchmarks have
been proposed for density-driven flow in porous media
[8,18,19,23,24,30,32,34,38,47,52]. The most popular benchmarks
[56] are the Henry [23] and the Elder problems [18,19].

The Henry problem describes saltwater intrusion into a coastal
aquifer. It has been widely used because of the existence of a semi-
analytical solution [2–4,13,25,36,61]. This problem is considered in
[56] as the sole density-driven flow problem with an exact solu-
tion. However, the semi-analytical solution of the Henry problem
is limited to high values of molecular diffusion coefficient which
renders it insensitive to density variations. The worthiness and
benefits of this problem for benchmarking density-driven flow
codes have been widely studied [16,52,53,56]. All of these studies

conclude that this problem is not sufficient to test numerical
models.

The Elder problem describes the flow induced by a high salinity
at the top of a rectangular domain [18,19,27,42,52,53,61] and is
considered to be a good benchmark for density-driven codes
[56]. It is more sensitive to density variations than the Henry prob-
lem. However, due to salt instabilities and fingering phenomena,
the Elder problem has no unique solution [50,52,56]. Indeed, con-
tradictory results were reported with either upwelling or down-
welling flow in the center of the domain [3,11,21,31,37]. A
unique solution to the Elder Benchmark is obtained in [50] using
a low Rayleigh number.

In this work, we propose a new benchmark semi-analytical
solution. The problem deals with a square cavity filled with a sat-
urated porous medium with saline water at one of its vertical
walls. It is obtained by recasting the popular thermal porous cavity
problem [7,9,10,44,49,54,65] as a variable-density problem where
the fluid density is a function of salt concentration. A steady state
semi-analytical solution is investigated for both velocity and con-
centration distributions using the Fourier–Galerkin (FG) method
as in the Henry problem [20,23,45,48,66]. To this end, the flow
and the transport equations are reformulated in terms of stream
function and relative concentration. These unknowns are then
expanded using appropriate Fourier series truncated at given
orders. Finally, applying the Galerkin method with the Fourier
terms as trial functions leads to a system of nonlinear algebraic
equations having the Fourier coefficients as unknowns. This sys-
tem can have a large size for small diffusion coefficient cases that

http://dx.doi.org/10.1016/j.advwatres.2014.04.013
0309-1708/� 2014 Elsevier Ltd. All rights reserved.

⇑ Corresponding author. Tel.: +33 3 68 85 04 48.
E-mail address: fahs@unistra.fr (M. Fahs).

Advances in Water Resources 70 (2014) 24–35

Contents lists available at ScienceDirect

Advances in Water Resources

journal homepage: www.elsevier .com/ locate/advwatres

http://crossmark.crossref.org/dialog/?doi=10.1016/j.advwatres.2014.04.013&domain=pdf
http://dx.doi.org/10.1016/j.advwatres.2014.04.013
mailto:fahs@unistra.fr
http://dx.doi.org/10.1016/j.advwatres.2014.04.013
http://www.sciencedirect.com/science/journal/03091708
http://www.elsevier.com/locate/advwatres


require high truncation orders to achieve stable semi-analytical
solutions [45,66]. For the Henry problem, the Fourier expansions
induce fairly complex summations that hamper the development
of the semi-analytical solution for these cases [14]. This difficulty
is avoided in the proposed benchmark because all of the terms
involving four overlapped summations are reduced to double
sums. As a consequence, the semi-analytical solution is investi-
gated for three test cases where the diffusion coefficient is taken
to be, ten, one hundred and one thousand times lower than that
used in the standard Henry problem. Moreover, an efficient algo-
rithm based on the Powell hybrid method is used to solve the
resulting nonlinear system of equations [40,41,43]. The efficiency
of this algorithm is improved by an analytical evaluation of the
Jacobian matrix.

The three test cases are also investigated numerically to assess
the worthiness and benefit of the porous cavity problem for bench-
marking density-driven flow codes. The numerical simulations are
performed using an efficient finite element numerical model devel-
oped by Younes and Ackerer [64]. In this model, the flow equation
is solved using the Mixed Hybrid Finite Element (MHFE) method
[4,58,61,62] and the advection–dispersion transport equation is
solved using a combination of the Discontinuous Galerkin (DG)
finite element method [46,63] and the Multi-Point Flux Approxi-
mation (MPFA) method [1,59–61].

The paper is organized as follows: Section 2 is devoted to the
description of the benchmark problem and its governing equations.
Section 3 is devoted to the development of the semi-analytical
solution. In Section 4, we show the advantages of the semi-analyt-
ical solution for the cavity problem compared to those of the Henry
problem. Section 5 briefly describes the numerical solution. In Sec-
tion 6, the semi-analytical and numerical results are presented and
discussed in the case of high, small and very small diffusion coef-
ficients. Finally, conclusions are provided in Section 7.

2. Benchmark description and governing equations

The benchmark is a synthetic problem inspired from the popu-
lar problem of natural convection in porous square cavity
[7,9,10,44,49,54,65]. The usual thermal problem is a square box
with impermeable boundaries, hot (resp. cold) right (resp. left) ver-
tical wall and adiabatic horizontal surfaces. The solute analogous
problem, considered in this work, is a square box of size H with
no flow boundaries, specified concentration of value one (resp.
zero) at the left (resp. right) vertical wall and zero concentration
gradient on the horizontal surfaces (Fig. 1). Note that the no flow
boundary condition at the left vertical wall is imposed by analogy
with the thermal problem. This condition is not physically consis-

tent for high concentrations, since contrarily to the thermal prob-
lem, the prescribed boundary concentration constitutes a source of
fluid [26].

The fluid flow is modeled using the continuity equation and the
generalized Darcy’s law. Assuming the Boussinesq approximation
to be valid (i.e. the density differences are confined to the buoy-
ancy term), these equations can be written in terms of the equiva-
lent fresh-water head as follows [28]:

S
@h
@t
þr � q ¼ 0 ð1Þ

q ¼ �q0g
l

k rhþ q� q0

q0
rz

� �
ð2Þ

where S is the mass storage coefficient related to the head changes
½L�1�, q ½ML�3� is the density of the fluid, h is the equivalent freshwa-
ter head ½L�, t is the time [T], q is the Darcy’s velocity ½LT�1�, g is the
gravity acceleration ½LT�2�, l is the dynamic viscosity of the fluid
½ML�1T�1�, k is the permeability ½L2�, q0 ½ML�3� is the fresh water den-
sity and z is the depth ½L�.

The solute mass transport is governed by the advection disper-
sion equation:

@C
@t
þ VrC �r � ðDrCÞ ¼ 0 ð3Þ

where C is the relative solute concentration ½��, V ¼ q=e is the fluid
velocity, e is the porosity and D is the dispersion tensor, reduced to
molecular diffusion D ¼ DmI (where I is the identity matrix).

The transport equation is coupled to the flow system via the fol-
lowing mixture density equation:

q ¼ q0 þ ðq1 � q0ÞC ð4Þ

where q1 is the saltwater density.
The following initial and boundary conditions are used with the

porous cavity problem:

t ¼ 0 : h ¼ 0; C ¼ 0; 0 6 x 6 H; 0 6 z 6 H

t > 0 : qz ¼ 0; @C=@z ¼ 0; z ¼ 0; z ¼ H

qx ¼ 0; C ¼ 1; x ¼ 0
qx ¼ 0; C ¼ 0; x ¼ H

ð5Þ

where qx and qz are the components of the velocity q in the x and z
directions.

3. The semi-analytical solution

The steady state continuity equation implies the existence of
the stream function defined by:

qx ¼
@w
@z

; qz ¼ �
@w
@x

ð6Þ

The fresh water head can be eliminated using the curl of Eq. (2).
To do so the horizontal and vertical components of this equation
are differentiated with respect to z and x respectively, and then
subtracted from each other. Using Eq. (6), the resulting equation
can be written as follows:

l
kgðq1 � q0Þ
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ð7Þ

Similarly, using Eq. (6), the steady state transport equation sim-
plifies to:

Dme
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ð8Þ
Fig. 1. Domain for the porous cavity benchmark.
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