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a b s t r a c t

This paper considers the characterization of uncertain spatial features that cannot be observed directly
but must be inferred from noisy measurements. Examples of interest in environmental applications
include rainfall patterns, solute plumes, and geological features. We formulate the characterization pro-
cess as a Bayesian sampling problem and solve it with a non-parametric version of importance sampling.
All images are concisely described with a small number of image attributes. These are derived from a
multidimensional scaling procedure that maps high dimensional vectors of image pixel values to much
lower dimensional vectors of attribute values. The importance sampling procedure is carried out entirely
in terms of attribute values. Posterior attribute probabilities are derived from non-parametric estimates
of the attribute likelihood and proposal density. The likelihood is inferred from an archive of noisy oper-
ational images that are paired with more accurate ground truth images. Proposal samples are generated
from a non-stationary multi-point statistical algorithm that uses training images to convey distinctive
feature characteristics. To illustrate concepts we carry out a virtual experiment that identifies rainy areas
on the Earth’s surface from either one or two remote sensing measurements. The two sensor case illus-
trates the method’s ability to merge measurements with different error properties. In both cases, the
importance sampling procedure is able to identify the proposals that most closely resemble a specified
true image.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In many fields there is a need to characterize uncertain spatial
features that cannot be observed directly. Examples of particular
interest in environmental applications include characterization of
surface rainfall in ungaged areas [59], tracking of subsurface solute
plumes, and identification of geological features such as ground-
water aquifers, mineral deposits, and oil reservoirs [6,14,26].
Remote sensing measurements such as passive and active satellite
microwave, geodetic, or seismic observations can often provide
useful but imperfect information about uncertain features. The sta-
tistical attributes of these noisy measurements can be estimated
by comparing them to more accurate but less readily available
‘‘ground truth’’ measurements. For example, ground-based
weather radar and rain gage data can serve as ground truth for
an evaluation of errors in satellite microwave measurements that
have greater coverage but may be less accurate. In subsurface flow

borehole measurements can serve as local ground truth for seismic
or other remotely sensed data.

The diverse measurements collected in a typical environmental
assessment can be conveniently combined in a Bayesian frame-
work that considers all available sources of information. In a fea-
ture-based application images are characterized by vectors of
appropriate variables (e.g. pixel values or feature attributes). The
Bayesian approach conditions a prior distribution of the uncertain
true image/vector on a set of noisy measured images/vectors,
yielding a posterior distribution that characterizes the uncertainty
remaining after the measurements are taken into account.

Many researchers have investigated methods for using noisy
measurements to characterize complex environmental features.
One option is to identify a point estimate (a single image) that opti-
mizes an appropriate deterministic performance objective (e.g. a
least-squares measure of misfit between the estimate and a mea-
sured image). These methods can be viewed as Bayesian a posteriori
estimators (i.e. estimators of the posterior mode) if Gaussian
assumptions are adopted. Feature-based optimization methods
often use level-set techniques to characterize irregular and/or dis-
connected feature boundaries [3,32]. Level set optimization meth-
ods are flexible and popular in the image processing community
but they do not generate posterior distributions of uncertain
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feature variables. Posterior distributions are needed for probabilistic
applications such as ensemble forecasting, risk assessment, extreme
value analysis, and stochastic control.

Ensemble methods such as Markov Chain Monte Carlo (MCMC)
and importance sampling provide a probabilistic characterization
that yields samples from the Bayesian posterior [1,7,17,44]. How-
ever, these methods often rely on parametric prior and measure-
ment error distributions (e.g. the multivariate Gaussian
distribution) and are generally not applied to feature characteriza-
tion problems. This reflects the fact that very large sample sizes
are needed to properly characterize the non-parametric multivari-
ate probability densities of high-dimensional image vectors
[12,65]. Spatial features such as geological facies, solute plumes,
and rain storms are usually difficult to describe with parametric
probability models. The multipoint statistical approach used in
many geological applications [53,57,58] provides an alternative that
generates realistic non-parametric prior or proposal samples from
training images. However, multipoint methods are generally unable
to sample from the Bayesian posterior distribution.

An ideal approach for characterizing uncertain features would
combine the level set method’s ability to handle complex geome-
tries, the general Bayesian probabilistic framework provided by
MCMC and importance sampling, and the non-parametric samples
generated by multi-point statistical techniques. This paper
describes an approximate method for integrating these different
capabilities in a single characterization procedure. It adopts a non-
parametric importance sampling approach with proposal samples
generated from training images and measurement error samples
generated from archived data. The computational limitations of
ensemble sampling are partially circumvented by representing each
image with a small vector of feature attributes that provides a more
concise and efficient description than a classical pixel-based
description. Since it is difficult to specify in advance a set of universal
attributes that adequately characterize complex features we use a
multidimensional scaling technique to derive the attributes directly
from image pixel values.

In the following sections we first formulate an attribute-based
approach to the feature characterization problem, using importance
sampling to generate approximate probability-weighted samples
from the Bayesian posterior. We then consider how multidimen-
sional scaling can identify image attributes from pixel-based image
vectors and how the priors and likelihoods used in importance sam-
pling can be generated from archived attribute data. The general
concepts are illustrated with a virtual experiment based on real rain-
fall measurements. The paper concludes with a discussion of con-
ceptual and computational issues that identify directions for
future research.

2. Image based importance sampling

Importance sampling is a procedure that generates samples from
a posterior probability distribution that is related through Bayes
theorem to a prior distribution and a likelihood function. Following
the approach outlined above, we formulate the feature-based
importance sampling problem in terms of a small number of distinc-
tive image attributes. In particular, we define a random vector x̂
composed of true image attributes. The true image is observed by
one or more sensors that produce noisy images, which we call cur-
rent operational measurements to distinguish them from the
archived operational measurements discussed below. The current
measurement from sensor r is described by an attribute vector ẑr .
Attributes for all of the measurements are assembled in the global
measurement vector ẑ. Section 3.4 describes how the image attri-
butes are derived.

The objective of importance sampling is to generate a set of
samples x̂1; x̂2; . . . x̂Nx of x̂ from the posterior probability density
pX̂jẐðx̂jẑÞ. This density can be expressed, through Bayes theorem, as:

pX̂jẐðx̂jẑÞ ¼ ĉ pẐjX̂ðẑjx̂ÞpX̂ðx̂Þ ð1Þ

where pẐjX̂ðẑjx̂Þ is the likelihood function, pX̂ðx̂Þ is a prior probability
density that does not depend on the measurements, and ĉ is a pro-
portionality constant selected to insure that the posterior density
integrates to unity. The prior density quantifies our prior uncer-
tainty about the true image while the likelihood function describes
the effects of measurement error. Since it is difficult to sample
directly from the posterior density we work instead with a more
convenient set of equally likely random samples from a proposal
density qðx̂Þ. Unlike the prior, the proposal density can depend on
the current measurements. We use the multipoint statistical tech-
niques described below to generate proposal samples. An approxi-
mate posterior probability distribution can be derived by
appropriate weighting of these proposal samples. It is convenient
to illustrate the process by considering the following equivalent
expressions for the conditional expectation of x̂ over pX̂jẐðx̂jẑÞ (for
a given ẑ):

Ep½x̂jẑ� ¼
Z

x̂ pX̂jẐðx̂jẑÞdx̂ ¼
Z
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pX̂jẐðx̂jẑÞ
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" #
dx̂
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ð2Þ

This mean can be estimated from the Nx proposal samples:
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pẐjX̂ðẑjx̂iÞpX̂ðx̂iÞ
qðx̂iÞ

dðx̂� x̂iÞ
" #

dx̂ ð3Þ

where x̂i is sampled from qðx̂Þ. The final bracketed expression in (3)
is a discrete approximation to the posterior density pX̂jẐðx̂jẑÞ that
appears in the second term in (2). This expression can be re-written
as:

pX̂jẐðx̂jẑÞ �
XNx

i¼1

wi dðx̂� x̂iÞ ð4Þ

where:

wi ¼
ĉ

Nx

pẐjX̂ðẑjx̂iÞpX̂ðx̂iÞ
qðx̂iÞ

ð5Þ

and ĉ is selected such that
P

iwi ¼ 1. Eq. (4) tells us that the pro-
posal image attribute vectors x̂1; x̂2; . . . ; x̂Nx can be interpreted as
samples from the posterior density if they are assigned the weights
ŵ1; ŵ2; . . . ; ŵNx computed in (5) rather than the equal weights that
apply when they are treated as samples from the proposal density.
So the proposal and posterior samples have the same values but dif-
ferent probabilities. Note that, in the special case where the pro-
posal density is the same as the prior the pX̂ðx̂iÞand qðx̂iÞ terms in
(5) cancel and the weights only depend on the likelihood. However,
it is usually best to draw proposal samples from a distribution that
depends on the current measurement rather than from the prior
distribution, which does not.

3. Generating the information needed for importance sampling

The importance sampling approach outlined in Section 2 needs
a set of proposals x̂1; x̂2; . . . ; x̂Nx , the likelihood function pX̂jẐðx̂jẑÞ,
and the prior pX̂ðx̂Þ and proposal qðx̂Þ probability densities. The
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