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Simulation of density-driven instabilities requires flexible methods to deal with the different spatial and
temporal scales involved. Downscaling approaches based on standard adaptive grid refinement aim at
resolving the fine-scale details only in the region of interest, but they may become computationally
expensive in presence of very corrugated unstable fronts because the problem to be solved approaches
the size of the fully refined system. The Downscaling Multiscale Finite-Volume (DMsFV) method over-
comes this issue by splitting the problems into a set of localized subproblems that interact only through
a global problem. However, in presence of convective instabilities (e.g. density-driven fingers) the diffu-
sion scale has to be resolved only at early times to capture the evolution of infinitesimal random pertur-
bations, whereas at later times fingers have developed and merged, allowing the use of a coarser
numerical description. Based on this observation, we present an adaptive algorithm which splits the sim-
ulation into three stages: an onset stage in which a set of localized problems is solved independently to
capture the initial growth of the instabilities; a transition stage in which the DMsFV method is used to
couple local and global scales; and a global stage in which only a fully coarsened description of the prob-
lem is employed. The dissolution-diffusion—-convection problem (which is typically studied in the con-
text of CO, sequestration) is chosen as an example to evaluate the accuracy of the adaptive algorithm.
For this problem, the use of a coarse grid that does not resolve the fine-scale details at earlier times leads
to a dramatic underestimation of mass influx and penetration depth. On the contrary, the solutions
obtained with the adaptive algorithm are in good agreement with the reference solution (obtained with
a fully refined discretization) and are able to capture total mass influx and penetration depth with excel-
lent accuracy. This demonstrates the need and the effectiveness of modeling local details during the
instability onset to capture large-scale features of the concentration patterns at later times.

© 2014 Elsevier Ltd. All rights reserved.
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1. Introduction and emerges from any initial infinitesimal random perturbation.

This requires a very fine numerical discretization (with grid size

Density-driven instabilities can occur in a variety of subsurface-
flow processes, e.g. sea-water intrusion in coastal aquifers [15],
geological storage of CO, [12,13,18], or in the presence of geother-
mal gradients [4,5]. As a consequence of the convective instability,
rapidly moving fingers form, which can drastically reduce the
travel time. Although, they have been extensively studied in the
last decades, e.g. [3,6,7,31,32,37], accurate simulations in field-
scale aquifer or reservoir modeling remain a challenge due to the
disparity of scales involved.

To correctly capture the onset of instability and the finger-
growth rate, it is important to resolve the fastest growing wave-
length, which is the smallest mode that is not damped by diffusion
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below a centimeter, e.g. [30]) at least at early simulation times. In
contrast, field-scale models consider subsurface flow processes that
take place over several kilometers and normally employ cell-sizes
in the order of several meters, which is dictated by geological het-
erogeneities and by the constraints set by the computational costs.

This discrepancy between a computationally realistic and a
physically sound discretization has fostered the development of
several adaptive grid-refinement algorithms (e.g. [30]) that refine
the computational grid around the unstable front to capture the
small scale behavior. In these methods, however, the size of the
larger problem that has to be solved, may approach the size of
the fully refined problem if the instability front is large and complex.
To avoid this issue, we have proposed a downscaling algorithm [21]
that is based on the Multiscale Finite-Volume (MsFV) method
[10,16,17,25,26,28,29]. The problem is downscaled by solving local
problems, that are coupled through a global problem defined on
the original grid; therefore, the largest problem to be solved is
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independent of the fraction of the domain that has to be refined. This
framework, which employs clearly separated local and global prob-
lems, is particularly well suited to model instabilities.

In case of density instability, after an initial period dominated
by diffusion, a critical time is reached at which convection starts
to dominate. At early time, convection patterns are small com-
pared to the size of the original discretization: their evolution is
local and does not require global information. At later time, the
convective patterns have grown such that they can be described
by the original discretization and local details can be neglected.
These observations naturally lead to define three stages that char-
acterize finger evolution with respect to the original discretization:
an onset or local stage; a transition stage; and a global stage.

In this paper, we propose to solve only local decoupled prob-
lems during the onset stage, whereas the Downscaling MsFV
(DMSsFV) algorithm [21] is used for the transition stage, and the
problem is solved on the original grid in the global stage. In this
approach global and local problems can be solved adaptively.

The paper is organized as follows. The equations governing
density-driven flow and transport are given in Section 2. In Sec-
tion 3 we discuss the different scales involved, whereas Section 4
describes the three numerical schemes employed in the three
different time stages. In Section 5 the performance of the adaptive
algorithm is investigated with the help of the dissolution-
diffusion-convection problem [8,30,31] for different durations of
the onset stage and the results for an ensemble of realizations
are analyzed. Finally, conclusions are drawn in Section 6.

2. Governing equations

We consider the flow of a single phase which consists of a sol-
vent fluid and a solute. If we assume that the fluid is incompress-
ible and employ the Boussinesq approximation (e.g. [15]), the fluid
conservation equation takes the form

V-v=0, (1)
where
v= —:—i[Vp - p(c)g] (2)

is the Darcy velocity.

In Eq. (2), k (m?) is the absolute permeability (which is assumed
isotropic); p (Pa) the pressure; g (m/s?) the gravity acceleration; p
(kg/m?) the density of the fluid, which depends on the normalized
concentration 0 < ¢ < 1 (-); and u (kg/m/s) the viscosity (concen-
tration effects on viscosity are neglected for simplicity). The con-
servation equation for the solute mass can then be written as

%(q&c) +V . [cv— ¢DpVe] =0, (3)

where ¢ (=) is the porosity; and D, (m?/s) the molecular diffusion in
the bulk solvent (we neglect mechanical dispersion). The equations
above form a system of non-linear differential equations that are
coupled by the density dependence on the solute concentration
and by the velocity. To be solved, the equations need to be comple-
mented with a constitutive relationship for p(c) [15,19]. As we are
mainly concerned with moderate density contrasts, we assume a
simple linear relationship of the form

p(C) = (1 - C)pmin + CPmax> (4)
where p_, and p,., are the density at c = 0 and ¢ = 1, respectively
(see, e.g. [1,14]).

By defining the dimensionless quantities

v t X
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where L is the characteristic length and Ap = p .« — Pmin» WE Can
write the system of non-dimensional equations as

V.o =0, 6)
gtiJrRav*-Vc—Vzc:O, )
where

_ kApgl
Ra = 1D (8)

is the dimensionless Rayleigh number, which describes the relative
importance of convective to diffusive processes.

3. Characteristic length scales and adaptive algorithm

In the following, we will consider the dissolution-
diffusion-convection (DDC) problem which has been extensively
investigated in the past decade in the context of long-term geolog-
ical storage of carbon dioxide in deep saline aquifer when instabil-
ity arises due to the presence of a layer of supercritical CO, located
above a brine layer: the CO, dissolves into the brine increasing its
density and creating a denser layer of CO,-saturated brine
[8,30,31]. This problem, which is a variant of classical density
instability problems related to Rayleigh-Bérnard convection [15],
such as the Elder problem [3,9,36], is chosen as an example, but
the method proposed is general. For instance, a similar process
can take place in presence of mineral dissolution that can sensibly
increase the density of the solution. Also, similar instabilities are
triggered in presence of temperature gradients as in the case of a
porous medium cooled from above (or heated from below); in this
case the role played by diffusion is replaced by conduction and the
density is modified by the thermal expansion of the fluid.

3.1. Physical length scales

The DDC problem is illustrated in Fig. 1. We consider a porous
medium of height H and width W, which is initially saturated by
a solvent. At time t = 0, a solute starts to dissolve at the top bound-
ary and diffuses into the solution, forming a diffusive boundary
layer, Fig. 1(a). Since the solution has higher density than the sol-
vent, the system is gravitationally unstable and small perturba-
tions grow by affecting the velocity field, Fig. 2. Linear stability
analysis applies at early times because concentration fluctuations
are small; it can be shown that the fastest growing perturbation
is characterized by the critical wavelength

o 52 H¢Dn
e =96.23 Apgk’ 9)

which is solely a function of the fluid and aquifer properties, e.g.
[37]. This is the smallest perturbation that is not damped by diffu-
sion and emerges from any infinitesimal random perturbation.

At early times, linear instability generates small, local convec-
tive cells that are characterized by a width A.. When perturbations
become larger, the nonlinear regimes starts and fingers grow and
merge into larger convective cells, Fig. 1(b). At later times, a fully
developed nonlinear fingering regime leads to the formation of
complex concentration patterns, Fig. 1(c). From this brief descrip-
tion it is clear that the size of the fingers (or of the convective cells,
which are intimately related) is a function of time, ¢(t), and is
equal to the critical wavelength, A, only in the initially linear
regime.
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