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We introduce the concept of maximal conditional posterior distribution (MCPD) to assess the uncertainty
of model parameters in a Bayesian framework. Although, Markov Chains Monte Carlo (MCMC) methods
are particularly suited for this task, they become challenging with highly parameterized nonlinear mod-
els. The MCPD represents the conditional probability distribution function of a given parameter knowing
that the other parameters maximize the conditional posterior density function. Unlike MCMC which
accepts or rejects solutions sampled in the parameter space, MCPD is calculated through several optimi-
zation processes. Model inversion using MCPD algorithm is particularly useful for highly parameterized
problems because calculations are independent. Consequently, they can be evaluated simultaneously
with a multi-core computer. In the present work, the MCPD approach is applied to invert a 2D stochastic
groundwater flow problem where the log-transmissivity field of the medium is inferred from scarce and
noisy data. For this purpose, the stochastic field is expanded onto a set of orthogonal functions using a
Karhunen-Loéve (KL) transformation. Though the prior guess on the stochastic structure (covariance)
of the transmissivity field is erroneous, the MCPD inference of the KL coefficients is able to extract rele-
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vant inverse solutions.
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1. Introduction

Models are tools on which environmental risk-assessment and
decision-making strategies can rely, provided it is proved that
the models are relevant to the problem under investigation. This
relevance can be addressed by facing a model prediction to obser-
vation data knowing that the whole procedure also requires
assigning model parameter values. Some parameters can be
directly measured while some others ought to be indirectly esti-
mated by comparing model predictions with observations. The
present work addresses the issue of parameter identification for
highly parameterized models. The notion of identification encom-
passes seeking the parameter values and assessing the uncertainty
on parameters and on model predictions.

During the past two decades, the increasing power of comput-
ers was conducive to emphasize and promote the so-called Bayes-
ian parameter estimation techniques. In essence, the Bayesian
framework leads to the definition of the parameter joint posterior
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probability density function (pdf), for instance inferred by means
of Markov Chain Monte Carlo (MCMC) samplings [1-4]. The notion
of posterior pdf is associated with the fact that the parameter’s pdf
is conditioned both on plausible (prior) parameter values and on
observation data. MCMC provides draws directly sampled from
the posterior pdf which leads to exploration of the plausible areas
in the parameter space. The Bayesian estimation using MCMC has
been subject to many developments and improvements during the
last decade (e.g. [5-8] among others). However, MCMC samplers
remain computationally expensive because many draws are
rejected by the statistical test embedded in the sampler. Further-
more, with MCMC, the parameters marginal posterior distributions
cannot be investigated independently. Recently, several strategies
have been proposed to increase MCMC efficiency (see [9-13]).

In the present work we propose a new method, partly grounded
in optimization techniques, to cope with the identification of
model parameters. The first step of this approach is to seek all
the probable local optima of the joint posterior pdf of the whole
set of parameters (including the maximum a posteriori estimate).
Next, several maximizations of the conditional pdf are performed
for different prescribed values of one selected parameter. The
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values assigned to this parameter are picked from a range around
its optimal value(s). The value of the other parameters is investi-
gated by maximizing the conditional pdf. This provides what we
call the maximal conditional posterior distribution (MCPD) of the
selected parameter. It actually corresponds to a discrete approxi-
mation of the pdf of a single parameter conditioned on data such
that the conditional pdf is maximized.

The MCPD returns information about the model parameter val-
ues supported by the data and any correlations between parame-
ters. The MCPD sample also allows uncertainty bounds to be
assigned to the model predictions. The main advantage of the
approach is that MCPD inferences for different parameters are
independent and can be evaluated simultaneously by easily dis-
tributing the calculations over a multi-core computer (or several
computers). This feature drastically decreases the computation
time and makes the inversion of highly parameterized problems
feasible.

The main topics addressed in the present paper are organized as
follows. A short outline on inverse modeling within a Bayesian
framework is proposed in Section 2, and then followed by the
details on the MCPD sampling in Section 3. The first exercise test-
ing the MCPD approach is proposed in Section 4 and addresses the
ability of the sampler to retrieve a multimodal probability density
function. The second test in Section 5 applies the MPCD approach
to identify the Karhunen-Loéve expansion [14] of a stochastic
transmissivity field for a two-dimensional steady-state groundwa-
ter flow problem.

2. Bayesian inference

In inverse modeling, the parameter set (of size s)0 = {64,...,6s}
of a given model is estimated from a set of observation data d. In
the following, we assume that the model does not suffer from mis-
conceptions. The model is therefore supposed to be exact regarding
the processes and the system that it mimics. However, observation
data remain uncertain (random variables) making the model
parameters to be also random and characterized by a joint proba-
bility density function p(6). We denote by ; the probable prior
uncertainty range of 6;. In a Bayesian framework, the parameter
joint posterior pdf is defined by

p(d|6)p(6)
p(d)

where p(d) is a scaling factor called evidence, p(0) is the prior den-
sity corresponding to a first guess on parameters before collecting
the observations, while p(d | 0) is called the likelihood function
measuring how well the model describes the data.

The parameter set that maximizes Eq. (1)

p(|d) = (1)

OV — arg maxp(0 | d) )
is called the maximum a posteriori estimate. It is the most probable
parameter set given our knowledge about the system (i.e. the datad
and the prior pdf of the parameters p(0)) and it is sought by appro-
priate optimization algorithms (e.g., descent methods, evolutionary
algorithms, etc ...). Unfortunately, finding 64" does not allow to
(fully) characterize the posterior uncertainty of the parameters
(except for linear models, see [15]). This uncertainty should be
assessed by calculating the marginal posterior density for each
parameter, defined as follows

P | d) = / P60 ()0, Vi=1...s 3)

where 0_; represents the vector of parameters 0 without ;. The inte-
gral in (3) can be approximated by a multidimensional quadrature
method or by a sampling-based method such as the Markov Chain

Monte Carlo (MCMC). Nevertheless, the computational effort can be
prohibitive and sometimes unaffordable for problems with a large
number of parameters.

In the present work, we propose an optimization-based method
in order to assess the parameter uncertainty for models post-
conditioned on available observation data. For this purpose, we
introduce the concept of maximal conditional posterior distribu-
tion. One could raise that relying on an optimization-based method
will require solving many problems, as is classical with standard
inversion techniques when obtaining a large set of solutions is con-
templated. As shown hereafter, the maximal conditional posterior
distribution has some specific features diminishing the calculation
loads.

3. Maximal conditional posterior distribution
3.1. The concept

We define the maximal conditional posterior distribution
(MCPD) of 6; as

Pi(6;) = IT‘}%X(P(in |d,6:) xp(6; | d) (4)

Pi(0;) is interpreted as the posterior probability function that
maximizes the conditional posterior distribution p(6_; | d,6;) and
encompasses the MAP probability (i.e. P;(6}"") = p(0“*" | d)).
By using the Bayes theorem, one can  write,
max (p(0_; | d,0;)) x p(6; | d) = max (p(6; | 0_;,d) x p(6_; | d)). There-
fore, the MCPD in (4) can also be viewed as the distribution of the
parameter 0;, knowing that the other parameters 0_; are at their
optimal values. The MCPD of 6; is assessed in a discrete form by
sampling Eq. (4). A parameter 0; is frozen at a prescribed value
and the other parameters 0_; are optimized to find (according to
the Bayesian definition) the maximal probability of these parame-
ters. Changing the prescribed value of 6; allows scanning the distri-
bution of 6;. In practice, the sampled values of 6; (denoted below ;)
are picked around the MAP estimate 0™ (estimated beforehand)
within its prior uncertainty range €; (see Fig. 1). This gives,

0", =arg rr(}axp(e,i |d,6; =6;) (5)

Pi(6;) =p(07; ] d,67) x p(6; | d) = p(6” [ d) (6)

Posterior joint distribution

Fig. 1. A two-dimensional illustration of the MCPD assessment. The MCPD of 0, is
built by maximizing the conditional joint posterior distribution. During this
maximization, the most probable value of 0, is derived while the value of 6, is
fixed. This operation is repeated by fixing 0, farther and farther from its maximum a
posteriori estimate.
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