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a b s t r a c t

Soil moisture can be estimated over large regions with spatial resolutions greater than 500 m, but many
applications require finer resolutions (10–100 m). Several methods use topographic data to downscale,
but vegetation and soil patterns can also be important. In this paper, a downscaling model that uses
fine-resolution topographic, vegetation, and soil data is presented. The method is tested at the Cache
la Poudre catchment where detailed vegetation and soil data were collected. Additional testing is per-
formed at the Tarrawarra and Nerrigundah catchments where limited soil data are available. Downscaled
soil moisture patterns at Cache la Poudre improve when vegetation and soil data are used, and model per-
formance is similar to an EOF method. Using interpolated soil data at Tarrawarra and Nerrigundah
decreases model performance and results in worse performance than an EOF method, suggesting that soil
data needs greater spatial detail and accuracy to be useful for downscaling.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Estimated soil moisture patterns are becoming more readily
available at coarse to intermediate resolutions. For example, the
Advanced Microwave Scanning Radiometer (AMSR-E), Soil Mois-
ture and Ocean Salinity (SMOS), WindSat, and Soil Moisture Active
Passive (SMAP) satellites can provide soil moisture estimates at
10–60 km spatial resolutions [14,26,29,37] . Optical and thermal
remote-sensing data from MODerate resolution Imaging Spectro-
radiometer (MODIS) can be used to downscale these estimates to
an intermediate resolution (1 km) [16,34]. Optical and thermal
remote-sensing can also be used to estimate intermediate-resolu-
tion soil moisture (500 m) using algorithms such as the Surface
Energy Balance Algorithm for Land (SEBAL) [3,44]. Finally, interme-
diate-resolution (approximately 700 m) soil moisture can be
obtained from the ground-based Cosmic-ray Soil Moisture Observ-
ing System (COSMOS) [59].

Many applications such as water management, agricultural pro-
duction, and trafficability require finer resolutions (10–100 m), so
methods are needed to downscale soil moisture estimates. To esti-
mate fine-scale variations in soil moisture, supplemental high-res-
olution data are needed that are strongly associated with these

variations. Topographic data are available at the appropriate reso-
lutions and can be an important control on soil moisture. For
example, Burt and Butcher [5] compared soil moisture values with
several topographic indices and found that a combined index that
includes plan curvature and the ratio of upslope area and slope is
best correlated with soil moisture. Brocca et al. [4] observed that
soil moisture is related to slope, elevation, specific contributing
area, and distance from the nearest channel. Similar to Burt and
Butcher [5], the strongest correlations occurred during wet condi-
tions [4]. Grayson et al. [20] and Western et al. [53] found that the
dependence of soil moisture on topography can vary through time
(temporal instability). For the Tarrawarra catchment in Australia,
lateral water movement controls the soil moisture patterns during
wet conditions and specific contributing area is most closely asso-
ciated with the soil moisture patterns. During dry periods, vertical
fluxes control soil moisture and the potential solar radiation index
(PSRI) becomes closely associated with the soil moisture patterns.

Several models have been developed to downscale soil moisture
based on topographic data. Wilson et al. [56] developed a model to
generate soil moisture patterns using empirical relationships with
topographic attributes that depend on the spatial-average soil
moisture. Their model can reproduce temporal instability and per-
forms well for the locations where it was developed, but the empir-
ical relationships are not expected to be widely applicable. Busch
et al. [6] developed an empirical downscaling method based on
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Empirical Orthogonal Function (EOF) analysis. This method can
also reproduce temporal instability and performs well at the catch-
ments where it was developed, but it cannot be applied to regions
that are dissimilar to where it was developed [6]. Coleman and
Niemann [10] proposed the Equilibrium Moisture from Topogra-
phy (EMT) model, which also downscales soil moisture based on
topographic indices. In this model, the relationships with the topo-
graphic indices are determined from conceptual descriptions of the
vadose zone processes. This model can also reproduce temporal
instability, and it outperforms the EOF method when few soil mois-
ture observations are available for calibration [51]. Although the
EMT model includes vegetation and soil parameters, it does not
consider fine-resolution variations of these properties if they occur.

Studies have demonstrated that fine-scale vegetation patterns
can also affect soil moisture patterns. For example, Pariente [38]
studied soil moisture under and between shrubs and found down-
slope and radial soil moisture gradients around the shrubs. During
precipitation events, the soil was wetter between shrubs than
under shrubs due to interception. During drying periods, the soil
was wetter under shrubs than between shrubs in part because
the canopy shaded the surface and decreased soil evapotranspira-
tion (ET) [38]. Lin [31] also found greater soil moisture and less soil
evaporation for medium and highly shaded areas than for weakly
shaded areas. Root-water uptake can also affect soil moisture pat-
terns, as soil with more roots tends to dry faster [50]. Root com-
pensation (higher root water uptake from wetter soil regions)
and hydraulic redistribution (root water flux from wetter to drier
soil regions) can reduce spatial variations in soil moisture at the
plant scale [21]. Temporal instability in soil moisture patterns
can be introduced by vegetation cover [25] and seasonal variations
in the demand for soil water by plants [19]. Naithani et al. [35]
found that soil moisture and vegetation patterns are similar from
leaf-onset to maturity but different from leaf maturity to senes-
cence. Overall, soil moisture patterns have been found to be inver-
sely related to patterns of leaf area index (LAI) [22], and vegetation
has been shown to be important particularly under dry conditions
[2,33].

Spatial patterns of soil moisture also depend upon variations in
soil properties including porosity [15], hydraulic conductivity
[15,32], soil texture [45,57], and soil depth [15,45,47]. The influ-
ence of soil properties may be greater during wet conditions [2]
and more important relative to topography when the topography
is flatter [58]. Famiglietti et al. [15] examined the influence of both
soil properties and topographic attributes on soil moisture through
correlation analyses. For wet conditions, porosity and hydraulic
conductivity controlled soil moisture patterns, but for dry condi-
tions, topography was more important and relative elevation,
cosine of aspect, and clay content influenced soil moisture pat-
terns. In a regression analysis, Takagi and Lin [45] also showed that
soil moisture variability was explained best by slope, curvature,
wetness index, depth to bedrock, percentage clay, and percentage
of rock fragments. Finally, Tromp-van Meerveld and McDonnell
[47] observed that differences in soil depth caused variations in
soil moisture content.

The objective of this paper is to generalize the EMT model to
accept fine-resolution vegetation and soil information if available.
It is hypothesized that including spatial variations in vegetation
and soil characteristics will improve the model’s ability to down-
scale soil moisture patterns. The generalization is called the Equi-
librium Moisture from Topography, Vegetation, and Soil
(EMT + VS) model. The model’s representation of vegetation is
improved by introducing its primary roles in interception, transpi-
ration, and soil evaporation. In addition, the structure of the model
is revised to allow both vegetation and soil properties to vary at the
fine resolution. To test the model, vegetation and soil data were
collected at the Cache la Poudre catchment in Colorado where

detailed soil moisture and topographic data were already available.
This catchment has substantial variations in vegetation cover
including forested, shrubland, and bare soil areas. The model is also
tested at two catchments in Australia (Tarrawarra and Nerrigun-
dah) where detailed soil moisture and topographic data are avail-
able along with limited soil data. These catchments have soil
property data that are not available at Cache la Poudre, and while
they do not have vegetation data, the vegetation at both catch-
ments is relatively homogeneous. In addition, the feasibility of
using interpolated soil data can be evaluated.

2. Methodology

2.1. EMT + VS model development

The EMT + VS model (like the EMT model) focuses on simulat-
ing the hydrologically active layer, which is defined as the depth
of soil through which most lateral flow occurs. This layer is consid-
ered as beginning at the ground surface and ending at a depth
where the hydraulic conductivity decreases substantially due to
the occurrence of bedrock or a lower permeability soil layer. Spe-
cifically, the model is based on the water balance for the active
layer in the land area that is upslope from an edge of a grid cell
in a digital elevation model (DEM). Soil moisture is assumed to
be uniform with depth in the layer, and infiltration is assumed to
be balanced by deep drainage (groundwater recharge), lateral flow,
and ET. This equilibrium assumption disallows hysteresis in the
estimated soil moisture patterns [10]. The water balance can be
written as:Z

A
FdA ¼

Z
A

GdAþ Lþ
Z

A
EdA ð1Þ

where A is the area that is upslope from the edge of the DEM cell, F
is the infiltration rate, G is the deep drainage, and E is the ET for the
fine-resolution grid cells included in the upslope area. L is the lat-
eral outflow through the edge of the DEM cell, which is the only
location where lateral flow exits the control volume.

Infiltration F is assumed to be spatially constant in the EMT
model. However, interception is known to decrease infiltration
[28], so infiltration in the EMT + VS model is represented as:

F ¼ Fmaxð1� kVÞ ð2Þ

where Fmax is the maximum infiltration rate, V is the fractional veg-
etation cover at the location, and k (0 6 k 6 1) is a temporally-con-
stant interception efficiency, a parameter that aims to account for
factors that influence interception, such as the foliage holding
capacity, which depends on vegetation type. Similar interception
models have been used previously. For example, the Gridded Sur-
face Subsurface Hydrologic Analysis (GSSHA) model diverts a con-
stant fraction of the rainfall to interception after an initial loss is
met [12,13]. The Variable Infiltration Capacity (VIC) model deter-
mines interception using a constant multiplied by the LAI [30],
which is similar to Eq. (2).

Deep drainage G in the EMT + VS model is the same as the EMT
model. Specifically, it is assumed to occur by gravity drainage with
no capillary gradient, so G is equal to the unsaturated vertical
hydraulic conductivity, which is determined from the Campbell
[7] equation. Thus,

G ¼ Ks;v
h
/

� �cv

ð3Þ

where Ks;v is the saturated vertical hydraulic conductivity, h is the
volumetric soil moisture in the hydrologically active layer, / is
the porosity, and cv is the vertical pore disconnectedness index [7].
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