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a b s t r a c t

A new methodology is proposed for the development of parameter-independent reduced models for tran-
sient groundwater flow models. The model reduction technique is based on Galerkin projection of a
highly discretized model onto a subspace spanned by a small number of optimally chosen basis functions.
We propose two greedy algorithms that iteratively select optimal parameter sets and snapshot times
between the parameter space and the time domain in order to generate snapshots. The snapshots are
used to build the Galerkin projection matrix, which covers the entire parameter space in the full model.
We then apply the reduced subspace model to solve two inverse problems: a deterministic inverse prob-
lem and a Bayesian inverse problem with a Markov Chain Monte Carlo (MCMC) method. The proposed
methodology is validated with a conceptual one-dimensional groundwater flow model. We then apply
the methodology to a basin-scale, conceptual aquifer in the Oristano plain of Sardinia, Italy. Using the
methodology, the full model governed by 29,197 ordinary differential equations is reduced by two to
three orders of magnitude, resulting in a drastic reduction in computational requirements.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Traditional inverse problems involve solving a weighted history
matching optimization problem that yields a set of optimally
selected parameters. The Bayesian inverse problem reformulates
the solution by treating the parameters as random variables that
are described by a posterior probability distribution. Markov Chain
Monte Carlo (MCMC) methods are a powerful set of algorithms
capable of exploring the probability space of the random variables
used in the formulation of the Bayesian inverse problem. The
MCMC simulation constructs a posterior distribution from samples
generated by a proposal distribution. The samples are accepted or
rejected to a Markov chain through the posterior density function
and proposal density function evaluated at both the current step
(previously accepted sample) and the proposed step (new sample).
If the Markov chain is constructed correctly it should converge to a
stationary distribution that represents the posterior distribution
[1,2]. Shi et al. [3] evaluated for vadose zone modeling the
confidence interval predictive performance of MCMC and com-
pared with nonlinear regression. Their results indicated that

MCMC produced better results and for small parameter
dimensions was more computationally efficient. One method to
lower the dimensionality of the parameter space is to parameterize
it further with the Karhunen–Loueve expansion (KLE). Das et al. [4]
applied MCMC with a KLE parameterization of saturated hydraulic
conductivity fields for soil moisture problems.

One of the most commonly used MCMC methods for determin-
ing the acceptance of parameter samples is the Metropolis–Has-
tings (M–H) algorithm [5,6]. In the case of groundwater, and the
focus of this paper’s Bayesian inverse problem, the parameter of
interest is the posterior probability distribution of hydraulic
conductivity given historical water level data. This distribution
can be used to quantify the uncertainty and assess its effects on
model predictions [7]. A problem with solving the Bayesian inverse
problem through M–H MCMC is that it requires a large number of
sequential model simulations to characterize an unknown
parameter’s posterior probability distribution. There are parallel
versions of MCMC, but they still require many sequential model
simulations to construct the chains. As a result, Bayesian inversion
for parameter estimation of a highly discretized groundwater
simulation model can be computationally infeasible. Another
alternative is to use a two-stage MCMC framework that relies on
a surrogate model, composed of a coarser grid or simplified flow
process, to first evaluate the acceptance of a proposed value before
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its acceptance is evaluated by the full model [8]. This can further be
enhanced by using adaptive sparse-grids [9].

Model reduction based on the Galerkin projection is a technique
that projects a high dimensional model characterized by ordinary
differential equations (ODEs) onto a low dimensional subspace,
spanned by a small number of optimally chosen basis functions
(principal components) [10]. The application of model reduction
to a confined, groundwater model has been shown to reduce the
dimensionality by several orders of magnitude. A variety of papers
have been written on model reduction techniques. Vermeulen et al.
[11] applied proper orthogonal decomposition (POD) for model
reduction to groundwater equations by collecting an ensemble of
hydraulic head solutions, called snapshots, at specific times from
the simulation and at a constant, reference pumping rate. Snap-
shots have to be taken for each reference extraction/injection well.
Vermeulen et al. [11] then applied principal component analysis
(PCA) to this ensemble to form a projection matrix that reduces
the groundwater model. McPhee and Yeh [12] followed this meth-
odology and demonstrated that a POD reduced model maintains its
sensitivity of head with respect to pumping, enabling it to embed
in a management optimization problem. Baú [13] increased the
utility of POD by deriving a reduced model for each Monte Carlo
realization of hydraulic conductivity to solve a stochastic, multi-
objective, confined groundwater management problem.

In principle, the model reduction technique applies to linear
systems, such as confined aquifers, because it uses the principle
of superposition. Application to nonlinear systems is possible, but
the reduced model error would be greater and may require
significantly more basis functions to characterize the model [14].
Robinson et al. [15] and Li and Hu [16] applied POD model reduc-
tion to several synthetic one- and two-dimensional mass transport
models without chemical reactions. Buchan et al. [17] solved for
the population growth of free moving neutrons, an eigenvalue
problem, in a nuclear reactor system. The eigenvalue problem
was reformulated to create pseudo-time dependence that
describes the snapshots used in their projection basis.

In general, the reduced model depends on the data used to con-
struct the projection matrix. The data consists of snapshots gener-
ated from the original full model for a given set of model parameter
values. Thus, the reduced model may be sensitive to changes in
parameters. This causes problems when the reduced model is used
for solving the inverse problem of parameter estimation.

Developing parameter-independent reduced models is a new
area of active research. Vermeulen [18] applied a reduced model
to an inverse problem by taking snapshot sets over a specific range
of parameter combinations. The drawback of this procedure is that
with a large number of parameters the combinations can get very
large. Additionally, if the parameters move away from the specified
range, the accuracy of the reduced model drops and a new set of
snapshots is required. Lieberman et al. [19] proposed a greedy
algorithm for the construction of a projection-based reduced
model that reduces the parameter and state spaces for a steady
state statistical inverse problem. A greedy algorithm solves a
multi-stage optimization problem by combining the optimal solu-
tion obtained from each stage. At each stage, the algorithm selects
the local optimum and moves on to the next stage. A solution to
the original multi-stage optimization problem is built up stage
by stage. In general, this greedy strategy does not guarantee global
optimum, but in many instances yields a good approximation to
the optimal solution. The advantages of the algorithm are its easy
implementation and fast execution. The objective function pro-
posed by Lieberman et al. [19] for the selection of the optimal
parameter set maximized the error at steady state between the ori-
ginal full model and the reduced model. The parameter set that
resulted from the optimization and its corresponding steady state
solution were added to their respective projection matrices. The

procedure was repeated until the specified error criterion was
satisfied. Pasetto et al. [20] proposed an algorithm to reduce the
computational burden associated with combinatorial search. The
algorithm applied a greedy algorithm that searched over sets of
parameter combinations and a snapshot selection strategy pro-
posed by Siade et al. [21]. The greedy objective was evaluated
using a scaled residual derived from the reduced model. This
reduces the number of full model evaluations required for the
determination of the principal components to be included in the
reduced model.

In this study, we develop a new methodology for building the
projection matrix for transient groundwater flow. Our proposed
methodology is intended to work for linear, regional groundwater
models where the zonation structure already has been deter-
mined; that is, the aquifer has been divided into a finite number
of zones and each zone is characterized by a constant parameter
(or parameters). The challenge of determining the optimum zona-
tion structure of a random field by parameterization lies outside
the scope of this paper.

This paper is organized into six sections. Section 1 is an
introduction. Section 2 presents the governing equation for the
confined aquifer and defines the notations. Section 3 discusses
the deterministic inverse problem and the Bayesian inverse prob-
lem. Section 4 reviews the concept of projection-based model
reduction and develops a parameter independent model reduction
methodology. Section 5 applies the model reduction methodology
to one- and two-dimensional test cases. Section 6 concludes the
findings and discusses the results.

The proposed methodology constructs a projection matrix that
covers the entire parameter space in the original full model and
does not require taking new snapshots while solving the inverse
problem. The projection matrix is assembled from snapshots gen-
erated iteratively by two greedy algorithms that select optimal
parameter sets and snapshot times between the parameter space
and the time domain. The proposed methodology is validated using
a conceptual one-dimensional model that compares the result of a
deterministic inverse problem with the empirical statistics from a
Bayesian inverse problem. We then apply the methodology to a
basin-scale, conceptual aquifer in the Oristano plain of Sardinia,
Italy. Using the methodology, the full model is reduced by two to
three orders of magnitude, resulting in a drastic reduction in
computational requirements.

2. Confined groundwater modeling

The governing equation for confined, anisotropic, saturated
groundwater flow can be expressed by the following parabolic
partial differential equation [22,23]:
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where h is the hydraulic head (L); Kx; Ky; Kz are the hydraulic
conductivities (L/T) in the x, y, and z directions; SS is the specific
storage (L�1); Q is a volumetric flux per unit volume in or out of
the system (T�1); and t is the time (T). Eq. (1) is subject to the
following initial and boundary conditions:

hðx; y; z; tÞ ¼ hIðx; y; zÞ; ðx; y; zÞ 2 CF ; t ¼ 0
hðx; y; z; tÞ ¼ hDðx; y; z; tÞ; ðx; y; zÞ 2 CD

K
@hðx; y; z; tÞ

@n
¼ qNðx; y; z; tÞ; ðx; y; zÞ 2 CN

CD [ CN ¼ CB

where hI is the initial condition, hD is a specified Dirichlet boundary
condition, qN is a specified Neumann boundary condition, @

@n is the
normal derivative, CF is the flow region, and CB is the boundary
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