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inverse problem. A series of inverse methods has been proposed to solve the inverse problem, ranging
from trial-and-error manual calibration to the current complex automatic data assimilation algorithms.
This paper does not attempt to be another overview paper on inverse models, but rather to analyze and
track the evolution of the inverse methods over the last decades, mostly within the realm of hydrogeol-
ogy, revealing their transformation, motivation and recent trends. Issues confronted by the inverse prob-
Parameter identification lgm. such as dealing with multiGaussianity and whether or not to preserve the prior statistics are
Data assimilation discussed.
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I 1. Introduction
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or for contaminant remediation. The forward model requires spec-
ification of a variety of parameters, such as, hydraulic conductivity,
storativity and sources or sinks together with initial and boundary
conditions. However, in practice, it is impossible to characterize
the model exhaustively from sparse data because of the complex
hydrogeological environment; for this reason, inverse modeling is
a valuable tool to improve characterization. Inverse models are
used to identify input parameters at unsampled locations by incor-
porating observed model responses, e.g., hydraulic conductivities
are derived based on hydraulic head and/or solute concentration
data. Deriving model parameters from model state observations
is common in many other disciplines, such as petroleum engineer-
ing, meteorology and oceanography. This work mostly focuses on
inverse methods used in hydrogeology.

1.1. The forward problem and the inverse problem

The forward problem involves predicting model states, e.g.,
hydraulic head, drawdown and solute concentration, based on a
prior model parameterization. Combining mass conservation and
Darcy’s laws, the forward groundwater flow model in an incom-
pressible or slightly compressible saturated aquifer can be written
as [1]

oh
v-(KVh):ssEHz (1)

subject to initial and boundary conditions, where V- is the diver-

gence operator (%+%+ a%) V is the gradient operator
T

(T’j%) , K is hydraulic conductivity (LT™"), h is hydraulic head

(L), S, is specific storage (L™1), t is time (T), and Q is source or sink

(T~"). The differential equation governing non-reactive transport

in the subsurface is:

o~V .(g0)+ V- (4DVC) @
subject to initial and boundary conditions, where C is the concen-
tration of solute in the liquid phase (M L™3), ¢ is porosity (-), D is
the local hydrodynamic dispersion tensor (L?> T~!) usually defined
as D; = a4|q| + D where o; refers to the longitudinal and transverse
dispersivities (L) and D,, is the molecular diffusion coefficient
(L2T~1), and q is the Darcy velocity (LT"!) given by Darcy’s law
as q = —KVh.

The inverse problem aims at determining the unknown model
parameters by making use of the observed state data. In the early
days of groundwater modeling, it was common to start with a prior
guess of the model parameters, run the forward model to obtain
the simulated states, and then enter in a manual loop iteratively
modifying the parameters, and then running the forward model,
until observed and simulated values were close enough so as to ac-
cept the model parameter distribution as a good representation of
the aquifer. This “trial and error” method falls into the scope of
“indirect methods” as opposed to the “direct methods” which do
not require multiple runs of the forward model to derive the model
parameters [2] as will be discussed below.

1.2. Why is the inverse problem necessary?

Sagar et al. [3] classified the inverse problem into five types
according to the unknowns, i.e., model parameters, initial condi-
tions, boundary conditions, sources or sinks and a mixture of the
above. Most documented inverse methods fall into the first type,
that is, they try to identify model parameters, which contribute lar-
gely to the model uncertainty due to the inherent heterogeneity of
aquifer properties. Parameter identification is of importance

considering the fact that no reliable predictions can be acquired
without a good characterization of model parameters. Parameter
identification is a broad concept here including not only the prop-
erty values within facies but the facies distribution, or in other
words, geologic features. The effect of geologic uncertainty in
groundwater modeling is examined, for instance, by He et al. [4]
in a real case study. Furthermore, data scarcity deteriorates the
characterization of the model parameters and raises the uncer-
tainty. Besides estimating aquifer parameters, the inverse methods
also play a critical role in assessment of uncertainty for the predic-
tions. Furthermore, the inverse problem might be used as a guide
for data collection and the design of an observation network. The
reader is referred to Poeter and Hill [5] who discussed the benefits
of inverse modeling in depth. In this work we are mainly con-
cerned with the uncertainty introduced by the unknown model
parameters and thus the inverse methods that are used to charac-
terize these parameters.

1.3. Why is the inverse problem difficult?

A problem is properly posed if the solution exists uniquely and
varies continuously as the input data changes smoothly. However,
most of the inverse problems in hydrogeology are ill-posed and
they cannot be solved unless certain assumptions and constraints
are specified. Ill-posedness may give rise to three problems: non-
uniqueness, non-existence and non-steadiness of the solutions,
among which non-uniqueness is the most common. Non-
uniqueness primarily stems from the fact that the number of
parameters to be estimated exceeds that of the available observa-
tion data. Another reason is that the observations are sometimes
not sensitive to the parameters to be identified; in other words,
the information content of the observations is very limited. For in-
stance, hydraulic heads close to the prescribed head boundaries are
more influenced by the boundaries than by the nearby hydraulic
conductivities (i.e., the hydraulic heads are not so sensitive to the
conductivities), and on the contrary, the hydraulic heads close to
the prescribed flux boundaries are determined to a large extent
by the hydraulic conductivities nearby [6].

A series of suggestions have been proposed to alleviate the ill-
posedness:

1. Reduce the number of unknown parameters, e.g., using zona-
tion, or collect more observation data so that the numbers of
data and unknowns are balanced.

2. Consider the prior information or some other type of constraint
to restrict the space within which parameters may vary.

3. Impose regularization terms to reduce fluctuations during the
optimization iterations [2].

4. Maximize the sensitivity of observations to model parameters,
for instance, by designing properly the observation network.

5. Minimize the nonlinearity in the model equation. Carrera and
Neuman [6] argued that working with the logarithm of hydrau-
lic conductivity reduces the degree of non-convexity during
optimization. An alternative is to infer hydraulic conductivity
using fluxes rather than heads as done by Ferraresi et al. [7],
since the relationship between hydraulic conductivity and flux
is linear (Darcy’s law) while the relationship between hydraulic
conductivity and head is nonlinear.

Detailed discussions on this subject can be found in [2,6,8,9]
among others.

Besides the ill-posedness problem, computational burden is the
second main hurdle for inverse problems [10]. There are several
reasons for the high CPU time requirement. Since many inverse
models are iterative, the forward model has to be run many times
until an acceptable parameter distribution is obtained. The time
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