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a b s t r a c t

Large spring floods in the Québec region exhibit correlated peakflow, duration and volume. Consequently,
traditional univariate hydrological frequency analyses must be complemented by multivariate probabi-
listic assessment to provide a meaningful design flood level as requested in hydrological engineering
(based on return period evaluation of a single quantity of interest). In this paper we study 47 years of
a peak/volume dataset for the Romaine River with a parametric copula model. The margins are modeled
with a normal or gamma distribution and the dependence is depicted through a parametric family of cop-
ulas (Arch 12 or Arch 14). Parameter joint inference and model selection are performed under the Bayes-
ian paradigm. This approach enlightens specific features of interest for hydrological engineering: (i) cross
correlation between margin parameters are stronger than expected , (ii) marginal distributions cannot be
forgotten in the model selection process and (iii) special attention must be addressed to model validation
as far as extreme values are of concern.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In several applied statistical areas, like hydrology, the analysis
of extreme events is of particular interest. Estimation of quantiles
for different characteristics of hydrological events such as spring
floods is standard practice in civil engineering. In fact, the choice
of an acceptable and cost-effective solution for the design of
hydraulic structures and optimal reservoirs operation depend upon
such quantities. For instance, critical structures like spillways and
dams are generally designed to withstand a flood peak and a flood
volume with a given small prespecified exceedance probability.

Generally, quantile estimation is achieved by fitting univariate
probability distributions to historical flood peaks and flood vol-
umes. Of course, since these two random variables are correlated,
univariate analyses should not be performed independently. In this
case, a bivariate analysis is more appropriate. In fact, an univariate
analysis can lead either to an underestimation of risk [11], which
may introduce tragic consequences, or to an overestimation of an
event severity [51], which could lead to unnecessary preemptive
spilling or increase in building costs.

Another hydrological application where a multivariate quantile
estimation is clearly needed concerns the modeling of the
combined risk upstream of the confluence of several rivers (see

e.g. [16]) or the summation of several sub-watershed in series.
For many applications, the peakflow results indeed from the com-
bination of flows for many intermediate watersheds. In this case,
the dependence between flows must be taken into account to pre-
dict the joint hydrological behavior correctly.

A problem in the application of the multivariate quantile esti-
mation comes from the concept of return period commonly used
in univariate analysis of extreme flood events. In multivariate anal-
ysis, the return period has no longer a unique definition depending
on whether we consider the intersection or the union of two events
[51]. In other words, the quantiles corresponding to a given return
period cannot map to a unique percentile value. For example, in
two dimensions, the quantiles are represented by an iso-curve
[45]. Recently Salvadori and De Michele [46] introduced the
concept of Kendall’s return period in order to solve the problem
of uniqueness of the return period.

This paper aims to demonstrate the advantages of addressing
quantile estimation of flood peak and flood volume using a Bayes-
ian bivariate model. The dependence structure between the two
random variables modeling is here specified by a copula model.
The main idea underlining copula construction given in [48] is to
separate marginal distributions from the dependence structure,
which allows to work with a broader class of parametric multivar-
iate distributions as explained by Renard and Lang [41]. Standard
frequentist estimates commonly take advantage of this separation
by first fitting independently density functions to each marginal
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sample, and then by calibrating the copula function (using for in-
stance the inverse cumulative density functions as in [18]). In a
fully Bayesian perspective however, statistical inference, prior elic-
itation and model selection are treated coherently in a global prob-
abilistic framework at the cost of a deeper involvement in the
computation of probability and a fair understanding of its opera-
tional interpretation. As a consequence, information from the
whole dataset can be jointly transferred to the various components
of the Bayesian model (i.e. margins + copula + priors) during the
inferential step. Correlations then emerge among Bayesian esti-
mates since they rely on the same pieces of information. Such links
may seem surprising for many modelers used to the standard ap-
proach, but bring useful information for hydrological engineering:

1. Cross correlation between margin parameters might be stron-
ger than expected.

2. Marginal distributions cannot be forgotten in the model selec-
tion process since Bayesian inference considers margins, copula
and priors as components which interact together within the
model structure.

3. Finally, after data assimilation, the global Bayesian probabilistic
framework allows to integrate out the parameter uncertainty
and yields predictive distributions for new data. Because of expli-
cit account of parameter partial knowledge, such Bayesian pre-
dictive pdf’s corresponds to mixtures which can be more
dispersed than their frequentist counterparts, for which parame-
ter point estimates are directly plugged into the likelihood func-
tion. Therefore the Bayesian predictive approach helps temper
overconfident prediction (underdispersed predictive pdf) and
therefore can lead to more cautious decisions under uncertainty.

Hydro-Québec’s new hydroelectric complex on the Romaine River
– which is located in the Eastern part of the province of Québec,
Canada- serves as a case study to illustrate the approach and the
previous keypoints.

Section 2 provides a description of the hydroelectric complex on
the Romaine River and of the data set. Section 3 is devoted to mul-
tivariate models in hydrology and parametric copulas. Bayesian
inference is developed in Section 4, namely the choice of priors
(Section 4.1), the posterior analyses as if the margins were inde-
pendent (Section 4.2) and the joint estimation of parameters for
margins and copulas model (Section 4.3). In Section 5, we consider
Bayesian model selection with some implementation issues. Con-
cluding comments are given in Section 7.

2. The Romaine River as a motivating case study

The case study developed throughout this paper concerns the
bivariate analysis of peak flow and volume of the Romaine River.

Hydro-Québec plans to build a hydroelectric complex on the
Romaine River in the lower North shore of the Saint-Laurent River.
The complex will include four important developments located
along the first 200 [km] of the river, with an installed capacity of
approximately 1,500 megawatts. Project construction will take
place from 2009 to 2020. The complex will have an average annual
production capacity of 8.0 TWh. Each power plant will include a
rockfill dam, a flood spillway, a power plant with two turbine-
alternator [3].

Romaine River rises in Lower Northern Québec and flows over a
distance of approximately 490 [km] draining into Saint-Laurent
Seaway. The localization of the Romaine River is illustrated in
Fig. 1.

This basin has numerous lake and rivers and covers an area of
14;470 ½km2�. Hydro-Québec plans to operate the Romaine River

water-resource system with an interesting hydroelectric power
generation potential.

Two hydrometric stations have been operated on the Romaine
River. The first one (ID 073801) is located a few kilometers up-
stream the outlet of the river. The spring flood is governed by
snowmelt and occurs each year, in average, between the end of
March and the end of June. For this station, with a watershed of
13;106 ½km2�, spring peak flood and corresponding volumes are
available from 1957 to 2005. For this case study, the volume of
each year corresponds to the maximum water discharge based
upon a fixed duration of 52 days occurring between March 1st

and June 30th. The peak flow is simply the maximum value within
the beginning and the end of the corresponding 52 days flood
event. This approach is the standard one used for flood frequency
analysis at Hydro-Québec. The series consist of n ¼ 47 observa-
tions, since the data for 1960 are missing. The second station (ID
73802) is located in the upstream part of the river (with a
waterbasin of 6675 ½km2�) and was managed for only 10 years
(1972–1981). This additional information is used to specify the
prior distributions in Section 4.1.

Fig. 2 shows the co-evolution of the two variables of interest
(peak flow and volume) during the study period. A careful look
suggests that the two variables are related to one another. To con-
firm this hypothesis, scatterplots of ranks are drawn. The rank
plots of Fig. 3 clearly reveal the presence of positive dependence
in the pairs (peak, volume).

One might also compute the common Pearson’s correlation, rn,
and base a test of independence thereupon. The conclusion is dubi-
ous because it is based on the assumption of bivariate normality,
which turns out to be inappropriate in this case. A better way to
proceed consists of computing Spearman’s rank correlation, qn,
or Kendall’s coefficient of concordance, sn, and to base a test of
independence on these distribution-free statistics. The values of
the three coefficients of dependence and the corresponding P-val-
ues for the test of independence are reported in Table 1. As could
be expected, the two quantities of interest are highly positively
cross-correlated.

Note that Fig. 2 suggests a change of hydrologic regime around
1985. Concomitant breaking points in the peak and volume
series of the Romaine River have been observed on most streams
in the Northeastern part of the Québec-Labrador Peninsula
[39,40,49,23]. Of course, possible concomitant breaking points in
the series may also artificially increase the natural correlation. This
phenomenon, which might reflect recent possible climatic varia-
tions, could be modeled by introducing a temporal structure such
as a Markov chain within a mixture model setting [13]. However,
in this paper, emphasis is put onto bivariate analysis and we as-
sume that the individual time series are stationary and, since a per-
mutation test for a lag one time correlation gives p-values of
respectively 3.9% and 1.1% for the peak and the volume series,
we also assume that they exhibit no time auto-correlation (see Sec-
tion 5.1 in [20]). Accordingly, when considered separately they can
be assimilated to random samples from univariate distributions
and when considered jointly to independent replicates of a bivari-
ate distribution. Preliminary studies with Generalized Pareto (the
appropriate model for values over a threshold) or Generalized Ex-
treme Value (the theoretical limiting behavior of block maxima)
did not indicate a better fit than with simpler distributions like
normal and gamma pdfs. Peak and volume will then be respec-
tively modeled using gamma or normal marginal distributions.
Although not grounded on theoretical models of extremes, such
distributions are candidates of common statistical use with the
convenience of conjugates for Bayesian analysis. Note that the
sample skewness of the volume is 0.0673 showing that this sample
can be considered as symmetric. The next section proposes to
make recourse to copula models to depict their joint behavior.
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