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a b s t r a c t

A Bayesian Geostatistical Approach to evaluate unknown upstream flow hydrographs in multiple reach
systems is implemented. The methodology was, firstly, tested through three synthetic examples of river
confluences, that differ in the available data, boundary conditions and number of the estimated inflow
time series. Input discharge hydrographs were routed downstream by means of the widely known
HEC-RAS river analysis system to obtain the downstream stage hydrographs used as known observations
for the reverse procedure. In almost all cases, the observed water levels were corrupted with random
errors to highlight the reliability of the methodology in preventing instabilities and overfitting. Then
the procedure was applied to the real case study of the Parma–Baganza river confluence located at the
city of Parma (Italy) to assess the tributary Baganza River inflow hydrograph (supposed completely unga-
uged) using water level data collected downstream on the main reach. The results show that the meth-
odology properly reproduces the unknown inflows even in presence of errors affecting the downstream
water levels. The practical applicability of the proposed approach is also demonstrated in complex river
systems.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Knowledge of discharge hydrographs in natural rivers is funda-
mental for water resource management, flood frequency analysis,
design of new structures, calibration of rainfall-runoff models
and calibration and testing of existing gauged stations, among
other purposes. Despite their importance, usually few or sometime
none of the river sites are equipped for measuring discharge over
time. In fact, continuous direct measurement of discharge in open
channels is quite difficult or even impossible and, in any way, time
and money consuming. For these reasons, most frequently, river
stations are monitored with level gauges that, at a disadvantage,
require a reliable rating curve (not easy to assess or sometimes
even indeterminable) to convert the water levels into discharge
values [1].

In this context, the development of methodologies able to
evaluate discharge time series in ungauged river sections based
on the knowledge of flow or, even better, stage hydrographs at
gauged stations is essential. To address this issue, methods based
on flow routing models (e.g. [2]) or lumped approaches (e.g.
[1,3–5]) can be applied. These methodologies typically allow for:
(1) the estimation of the downstream hydrograph assuming the
discharge known at an upstream site; (2) the evaluation of the

discharge hydrographs in two river sections where the water
levels are simultaneously known; (3) the estimation of upstream
discharge by assuming the flow known at a downstream site and
stages measured at both the ends. Nevertheless, the above
mentioned methods do not contemplate the estimation of flow
hydrographs in ungauged sections upstream the gauged stations.
The assessment of an upstream flow hydrograph, starting from
the knowledge of downstream discharges or water levels, is known
as reverse routing process that, belonging to the inverse problem
category, deals with existence, non-uniqueness and instability of
the solution [6]. As a consequence, the reverse routing problem
is particularly sensitive to errors present in the available data
and/or in the model that are amplified during the inverse
procedure and can cause instabilities and spurious oscillation of
the solution [7].

In literature two main approaches are available to solve the re-
verse routing problem in open channels: the inverse solution of the
de Saint Venant equations and the application of the Muskingum
model in a reverse form [7–15]. A detailed review of the literature
can be found in [16]. In almost all the previous studies, the reverse
routing procedures have been applied in single prismatic channels
with simplified flow conditions; the presence of multiple reaches,
irregularities such as compound cross sections, contractions,
expansions and structures was never considered.

This study extends the Bayesian inverse methodology applied in
[16] to more complex synthetic and real cases where, for the first
time, the presence of multiple reaches has been considered. The
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inverse procedure uses as known observations water level data
recorded downstream. In a Bayesian framework, the unknown dis-
charge time series is expressed as a random function defined by
means of its statistical properties. Uncertainty into the unknowns
and errors in the available data can be considered. Prior informa-
tion, in form of geostatistical models, is interjected into the solu-
tion, imposing some degree of continuity and/or smoothness on
the shape of the estimated hydrograph regularizing the solution.

The applied methodology requires a calibrated numerical model
of the considered river system. The hydraulic model is strictly con-
nected with the inverse approach since it relates the unknown
parameters (upstream discharge values) with the downstream
water levels used as observations. As a consequence, the flow mod-
el must be able to account for all the relevant hydraulic processes
in the river reach: resistance, bed slope, compound cross sections,
confluences, structures, etc. It is beyond the scope of this work to
discuss the hydraulic model setup and its calibration; hereafter
these processes are considered already accomplished. In this paper,
the used forward numerical model is the widely known HEC-RAS
river analysis system [17], but any model able to solve analogous
problems could be adopted in the same way.

A summary of the Bayesian Geostatistical Approach is pre-
sented in Section 2. Then, after a brief description of the forward
routing model (Section 3), the results of the inverse procedure, ap-
plied to estimate the inflow hydrographs of multiple reach systems
using synthetic downstream level data, are reported in Section 4.
Three examples of river confluences, that differ in the downstream
boundary conditions, the water level data used during the inver-
sion and the number of the estimated discharge hydrographs, were
considered. In Section 5, the BGA is applied to the real case study of
the Parma-Baganza river confluence at the city of Parma (Italy).
Conclusions are, finally, drawn in the last section.

2. Bayesian Geostatistical Approach

The Bayesian Geostatistical Approach (BGA) is a flexible highly
parameterized inversion method suitable to estimate unknown
parameters that exhibit auto-correlation, either in space or time.
The term Bayesian refers to the inverse theory aspect, whereas
geostatistical deals with the way of enforcing prior information
into the solution.

A flow hydrograph, that involves rainfall-runoff processes, is a
continuous function of the time that shows a serial correlation
and its shape is adequately described by means of a covariance
function. These characteristics make BGA suitable to estimate an
unknown inflow hydrograph expressing it as a random function
defined through its statistical properties and, at the same time,
incorporating uncertainty in the unknowns and errors in the
observations.

In this section a brief description of the inverse methodology is
reported; more details can be found in [18–24].

The basis of BGA is the Bayes’ theorem:

pðsjyÞ / pðsÞLðyjsÞ ð1Þ

where s is the unknown parameter vector (the time values of the
estimated inflow hydrographs in this work), y is the measured data
vector (downstream water levels), pðsjyÞ is the posterior probability
density function (pdf), pðsÞ represents the prior pdf of s and LðyjsÞ is
the likelihood function. The prior pdf of s is assumed with Gaussian
distribution with unknown mean E½s� ¼ Xb and covariance
E½ðs� XbÞðs� XbÞT� ¼ Q ss; where E designates the expected value,
X is a known matrix of basis functions, b is a vector of drift coeffi-
cients and Q ss indicates the parameter covariance matrix. The prior
pdf represents soft or expert knowledge about the structure of the
unknowns s, serves the role of regularization and can eventually
be used to enforce non-negativity to the parameters [25,26]. In this

work the inflow hydrographs were estimated in a power trans-
formed space [27,28]; even if it was not strictly necessary to impose
non-negativity to the unknowns, this transformation avoids nega-
tive values in the calculated credibility intervals.

The likelihood function, assumed also Gaussian, characterizes
the errors and indicates how likely a candidate set of parameters
s is to reproduce the observations y through application of the for-
ward model.

With those assumptions, the posterior pdf can be written as:

pðsjyÞ / exp �1
2
ðs� XbÞTQ�1

ss ðs� XbÞ
� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Prior term

� exp �1
2
ðy � hðsÞÞTR�1ðy � hðsÞÞ

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Likelihood term

ð2Þ

where hðsÞ represents the modeled values collocated in time with
the observed data y (by means of HEC-RAS in this work) and R is
the covariance matrix of the epistemic errors (a lack of knowledge
of the problem as a result of many sources of error such as those
in the observed data and/or in the conceptual model).

The best set of parameters s maximizes the posterior pdf (2); for
an efficient method to calculate the best estimates see for example
[23].

When the relation between parameters and observations (ex-
pressed in this work by the forward model that solves the unsteady
one dimensional de Saint Venant equations) is non-linear, the
function h(s) can be successively linearized about a candidate solu-
tion sk following the quasi-linear geostatistical approach [21].

At each iteration k in the linearization process, one approxi-
mates h(s) � h(sk) + H(s � sk) where H is the Jacobian matrix
(sensitivity of observations y to unknown parameters s) evaluated

at each iteration as H ¼ @hðsÞ
@s

���
sk

using a finite difference approach.

The computation of H requires as many forward model runs as
the number of parameters (s) plus one base run.

The uncertainty of the unknowns can be evaluated in terms of
posterior covariance that is expressed through [23]:

V ¼ Q ss � Q ssHTðHQ ssHT þ RÞ�1
HQ ss ð3Þ

The posterior covariance can be used to evaluate the 95% credibility
intervals of the estimated parameters; it is worth noting here that,
in case of estimation in a power transformed space, the upper and
lower 95% intervals are not symmetrical about the best estimate
in the not transformed space.

In this work, the prior covariance matrix of the unknown
parameters, Qss, is assumed to have Gaussian form:

Q ss ¼ r2
s exp � d2

l2

 !
ð4Þ

where r2
s is the variance, d is the separation time between param-

eters s and l is the integral scale. The Gaussian model, in describing
the prior information, enforces only continuity and some degree of
smoothness to the unknowns but the observations still drive the
solution.

The epistemic errors are assumed independent and identically
distributed with variance r2

R and covariance matrix R ¼ r2
RI where

I is the identity matrix.
The structure of s, dependent on the prior covariance parame-

ters (r2
s and l), and the epistemic variance (when not a priori fixed),

that regulate the degree of smoothness of the estimation and the
level of fit between simulated and observed quantities, are inferred
from the data using a Bayesian adaptation of the Restricted Maxi-
mum Likelihood method of [21]. The structural parameters are de-
scribed through a probability density function and estimated
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