
Comparison of Ensemble Kalman Filter groundwater-data assimilation
methods based on stochastic moment equations and Monte Carlo
simulation

M. Panzeri a,⇑, M. Riva a,b, A. Guadagnini a,b, S.P. Neuman b

a Dipartimento di Ingegneria Civile e Ambientale, Politecnico di Milano, Piazza L. Da Vinci 32, 20133 Milano, Italy
b Department of Hydrology and Water Resources, University of Arizona, Tucson, AZ 85721, USA

a r t i c l e i n f o

Article history:
Received 30 October 2013
Received in revised form 30 January 2014
Accepted 31 January 2014
Available online 10 February 2014

Keywords:
Ensemble Kalman Filter
Random hydraulic conductivity field
Moment equations
Data assimilation
Transient groundwater flow
Filter inbreeding

a b s t r a c t

Traditional Ensemble Kalman Filter (EnKF) data assimilation requires computationally intensive Monte
Carlo (MC) sampling, which suffers from filter inbreeding unless the number of simulations is large.
Recently we proposed an alternative EnKF groundwater-data assimilation method that obviates the need
for sampling and is free of inbreeding issues. In our new approach, theoretical ensemble moments are
approximated directly by solving a system of corresponding stochastic groundwater flow equations. Like
MC-based EnKF, our moment equations (ME) approach allows Bayesian updating of system states and
parameters in real-time as new data become available. Here we compare the performances and accura-
cies of the two approaches on two-dimensional transient groundwater flow toward a well pumping
water in a synthetic, randomly heterogeneous confined aquifer subject to prescribed head and flux
boundary conditions.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Kalman Filter (KF) is a well-known inverse technique used to
assimilate incoming data into physical system models sequentially
in real time. It was originally introduced by Kalman [1] to integrate
data corrupted by white Gaussian noise in linear dynamic models
the outputs of which include additive noise of a similar type. KF
entails two steps: a forward modeling (or forecasting) step that
propagates system states in time until new measurements become
available, and an updating step that modifies system states
optimally in real time on the basis of such measurements. Some
modern versions of KF update system states (e.g., hydraulic heads)
and parameters (e.g., hydraulic conductivities) jointly based on
measurements of one or both variables (e.g., [2]).

Gelb [3] proposed an Extended Kalman Filter (EKF) to deal with
nonlinear system models. EKF linearizes the model and propagates
the first two statistical moments of target model variables in time.
As such it is not suitable for strongly non-linear systems of the kind
encountered in the context of groundwater flow or transport in any
but mildly heterogeneous media. EKF further requires large
amounts of computer storage which limits its use to relatively

small-size problems. Evensen [4] and Burgers et al. [5] proposed
to overcome these limitations through the use of Monte Carlo
(MC) simulation. Their so-called Ensemble Kalman Filter (EnKF)
approach utilizes sample mean values and covariances to perform
the updating. The development of sensors and measuring devices
capable of recording massive amounts of data in real time has
made EnKF popular among hydrologists, climate modelers and
petroleum reservoir engineers [6,7]; assimilating such massive
data sets in batch rather than sequential mode, as is common with
classical inverse frameworks such as Maximum Likelihood, would
not be feasible. Applications of EnKF to groundwater and multi-
phase flow problems include the pioneering works of [8,9]; for
more recent reviews see [6,7,10].

A crucial factor affecting EnKF is the size of the ensemble, i.e.,
the number (NMC) of MC simulations (sample size) employed for
moment evaluation. Whereas to estimate mean and covariance
accurately requires many simulations, working with large NMC
tends to be computationally demanding. Chen and Zhang [11]
showed that a few hundred NMC appear to provide accurate esti-
mates of mean log-conductivity fields. They pointed out, however,
that obtaining covariance estimates of comparable accuracy would
require many more simulations, a task they had not carried
through. Efforts to reduce the dimensionality of the problem
through orthogonal decomposition of state variables have been re-
ported by Zhang et al. [12] and Zeng et al. [13,14].
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Small sample sizes give rise to filter inbreeding [6] whereby
EnKF systematically understates parameter and system state esti-
mation errors; rather than stabilizing as they should, these errors
appear to continue decreasing indefinitely with time, giving a false
impression that the quality of the parameter and state estimates
likewise keeps improving. There is no general theory to assess, a
priori, the impact that the number NMC of MC simulations would
have on the accuracy of moment estimates. The rate at which the
sample mean, variance and associated confidence intervals of a
random variable converge with the number of Monte Carlo runs
is found, for example, in [15] and references therein. It suggests
that increasing NMC by a factor of a few hundred, as is often done,
would likely not lead to marked improvements in accuracy. A prac-
tical solution is to continue running MC simulations till the sample
mean and variance stabilize or, if computer time is at a premium,
till their rates of change slow down markedly.

van Leeuwen [16] showed theoretically that filter inbreeding is
caused by (a) updating a given set (ensemble) of model output
realizations with a gain computed on the basis of this same set
and (b) spurious covariances associated with gains based on finite
numbers NMC of realizations. Remedies suggested in the literature
are generally ad hoc. Houtkamer and Mitchell [17] proposed split-
ting the set of MC runs into two groups and updating each subset
with a Kalman gain obtained from the other subset. Hendricks
Franssen and Kinzelbach [18] proposed alleviating the adverse ef-
fects of filter inbreeding by (a) dampening the amplitude of log-
conductivity fluctuations, (b) correcting the predicted covariance
matrix on the basis of a comparison between the predicted ensem-
ble variance and the average absolute error at measurement loca-
tions, and (c) running a large number of realizations (in their case
NMC = 1000) during the first simulation step and a subset of real-
izations (NMC = 100) thereafter; a procedure similar to the latter
was also suggested in [19]. To select an optimal subset one would
minimize some measure of differences between cumulative sam-
ple distributions of hydraulic heads obtained in the first step with
(say) NMC = 1000 and NMC = 100. This, however, brings about an
artificial reduction in variance [18]. Hendricks Franssen and Kin-
zelbach [18] obtained best results with a combination of all three
techniques. Hendricks Franssen et al. [20] observed filter inbreed-
ing when analyzing variably saturated flow through a randomly
heterogeneous porous medium with NMC = 100 even after damp-
ening log-conductivity fluctuations by a factor of 10. Several
authors (e.g., [21–24]) have seen a reduction in filter inbreeding ef-
fects through covariance localization and covariance inflation.
Covariance localization is achieved upon multiplying each element
of the updated state covariance matrix by an appropriate localiza-
tion function to reduce the effect of spurious correlations [17,25].
In the covariance inflation methods, the forecast ensemble is in-
flated through multiplication of each state by a constant or variable
factor (e.g., [23,24,26]).

To eliminate the need for repeated MC simulations and associ-
ated filter inbreeding effects, we [27] proposed a new EnKF ap-
proach based on stochastic moment equations (MEs) of transient
groundwater flow [28,29]. Solving these deterministic equations
yields direct estimates of theoretical ensemble moments required
for EnKF. We tested our new approach on a synthetic two-dimen-
sional flow problem, showing it to yield accurate estimates of log-
conductivity and their variance across the flow domain. MEs have
been used successfully to analyze steady state [30] and transient
flow [29] as well as particle travel times and trajectories [31,32]
in randomly heterogeneous media. Second-order approximations
of these equations have yielded accurate predictions of flows in
heterogeneous media with unconditional variances of (natural)
log hydraulic conductivity as high as 4.0 [30]. A transient algorithm
based on the Laplace transform due to [29] was shown to be more
efficient when computing transient hydraulic head variance than

the traditional Monte Carlo method. A detailed comparison be-
tween ensemble- and simulation-based inversion methods in the
case of steady-state groundwater flow was presented by Hendricks
Franssen et al. [33].

While the theoretical elements and the numerical algorithms
associated with our new ME-based EnKF framework have been
presented in [27], a detailed comparison between MC- and ME-
based EnKF variants in domains having various degrees of hetero-
geneity is still lacking. In this paper we compare the performances
and accuracies of these two approaches on synthetic problems of
two-dimensional transient groundwater flow toward a well pump-
ing water from a randomly heterogeneous confined aquifer subject
to prescribed head and flux boundary conditions. Problems differ
from each other in the variance and (integral) autocorrelation scale
of the log hydraulic conductivity field. The paper is organized as
follows. Section 2 casts the Kalman Filter updating algorithm for
groundwater data assimilation within a Bayesian framework
(e.g., [34–36]). Section 3 presents the flow problem and describes
the two EnKF procedures based on ME and MC. Section 4 illustrates
and discusses some of our key results and Section 5 presents our
conclusions.

2. Bayesian representations of ME- and MC-based EnKF

We consider transient groundwater flow in a saturated domain
X governed by stochastic partial differential equations of mass bal-
ance and Darcy’s law

SS
@hðx; tÞ
@t

þr � qðx; tÞ ¼ f ðx; tÞ ð1Þ

qðx; tÞ ¼ �KðxÞrhðx; tÞ ð2Þ

subject to initial and boundary conditions

hðx; t ¼ 0Þ ¼ H0ðxÞ x 2 X ð3Þ

hðx; tÞ ¼ Hðx; tÞ x 2 CD ð4Þ

�qðx; tÞ � nðxÞ ¼ Qðx; tÞ x 2 CN ð5Þ

where h(x, t) is hydraulic head and q(x, t) the Darcy flux vector at
point (x, t) in space–time, K(x) is an autocorrelated random field
of scalar hydraulic conductivities, SS is specific storage treated here
as a deterministic constant, H0(x) is (generally) a random initial
head field, f(x, t) is (generally) a random source function of space
and time, H(x, t) and Q(x, t) are (generally) random head and normal
flux conditions on Dirichlet boundaries CD and Neumann bound-
aries CN, respectively, and n is a unit outward normal to CN.

Our goal is to determine the posterior probability distribution of
the random augmented (i.e., containing both model parameters
and state variables) state vector

s ¼
Y
h

� �
ð6Þ

conditioned on measurements of the random vectors Y and h. The
parameter vector Y contains NY log-conductivities and the state vec-
tor h includes Nh hydraulic head values satisfying (1)–(5), so that s
has dimension Ns = NY + Nh. In our finite element solver of (1)–(5),
described below, NY is the number of elements (or collections of ele-
ments) in which hydraulic conductivity is taken to be uniform and
Nh is the number of nodes at which heads are computed.

We denote the state vector s at the end of time interval (Tk-1, Tk],
before new measurements become available at time t = Tk, by s f ;Tk .
In line with [34–36] we consider s f ;Tk to be multivariate Gaussian
with prior probability density (pdf)
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