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a b s t r a c t

We use a streamtube based decomposition and a recently developed, simple relationship between tracer
concentrations and ages to estimate groundwater age distributions. The decomposition assumes that an
age distribution can be approximated using a superposition of linearly independent streamtubes. Trans-
port in each streamtube is modeled with inverse Gaussian functions, the parameters of which are inferred
from radiometric tracer concentrations. Three simple sampling methods are considered for weakly and
moderately heterogeneous aquifers and the method gives reasonable approximations in both systems.
The method is sensitive to errors in the measured concentrations but some of these errors are easily iden-
tifiable and a range of plausible age distributions can still be found. The method was then tested in a
highly heterogeneous system and reasonable estimates of the age distribution were also obtained. The
simplicity of this method and its insensitivity to the heterogeneity structure suggest that this approach
may be an effective tool for obtaining estimates of age distributions in natural systems.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Groundwater age distributions have a wide range of potential
applications in hydrogeology, including model calibration, reactive
transport, risk assessment, sustainability studies, and reservoir
characterization (e.g. [21,41]). Age distributions are useful in all
of these applications because the same hydrodynamic processes
that affect the migration of dilute solutes also affect age distribu-
tions ([19]). The age of an individual water molecule of groundwa-
ter can be defined as the amount of time that has elapsed since it
was last exposed to the atmosphere. Any sample of water is a col-
lection of molecules and represents a mixture of water of different
ages; the age distribution is simply the histogram (or probability
density function) of all the ages present in the sample. The shape
of an age distribution reflects many of the heterogeneities in the
subsurface that can usually only be inferred from an artificial tra-
cer test and this has substantial implications for parameter estima-
tion and high-resolution groundwater modeling [16,21]. However,
the real problem lies in identifying the age distributions in natural
systems and this practical challenge limits their application in
hydrologic problems.

Age distributions can be generated analytically by solving the
age equation in simple cases [19] or from numerical flow and

transport models [37,39,45,47]. The numerical models can include
complicated processes, such as mass transfer, reactions, and tran-
sient conditions such as pumping or seasonal flow variations
[10,20]. Detailed models must be realistic to be useful but they will
still have large uncertainties associated with their parameter spec-
ification and these uncertainties may cause the results to be unre-
liable [44]. Even in a well-defined, realistic model there is still no
guarantee that the modeled ages reflect the actual distribution
because age cannot be directly measured and validating the model
based on tracer concentrations can also be difficult.

Measured concentrations of geochemical tracers can also be
used to determine ages but they are not without complications.
Many different tracers can be used, including radiogenic isotopes
and anthropogenic compounds, and the way ages are determined
is dependent on the tracer [8]. Geochemical tracers are often as-
sumed to give an estimate of the mean age (first moment of the
age distribution) under an assumption of piston or plug flow, but
this will be inaccurate is the higher moments of the distribution
are non-zero [46]. The term ‘‘apparent age’’ is often used to
describe tracer ages because many unknown or unaccounted for
factors, like dilution or borehole mixing, may have affected the
measured tracer concentration or the interpretation of the concen-
tration as an age [2,45,49]. The effects of dilution and mixing on
measured concentrations are difficult to isolate and even the
installation of monitoring wells can affect the age distribution
[48]. Lumped parameter models (LPMs) (see [51]) are able to
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account for some of these complicating factors by assuming the form
of an age distribution and then use multiple tracers to constrain
the parameters of that distribution (e.g. [1,3,9,50]) but it should
be noted that the distributions are assumed. The simplified models
often cannot represent broad distributions with heavy, old age tails
(i.e. high positive skew), or multi-modal distributions (e.g. [25])
but LPMs can still be useful, particularly when coupled with a mix-
ing model that accounts for some of these effects. Multiple tracers
acting on different time scales or measured at different times can
be used to improve age estimates [9] and Bayesian inference can
also provide improvements, as demonstrated by Massoudieh
et al. [36]. The obvious limitation to geochemical methods is that,
in most cases, we are limited to using whatever tracers are already
present in an aquifer because forced or injected tracers cannot pro-
vide the same extent of characterization [30] and may alter the
flow field in the natural system. Furthermore, if time series data
has not already been collected, a single sampling event may not
be sufficient for a LPM, even if multiple tracers are sampled.

Mechanistic connections between the age distributions and
measured tracer concentrations are also powerful tools. The differ-
ence between these studies and the LMPs are that transport pro-
cesses are not treated solely as a ‘‘black-box’’ that produces an
assumed distribution, and a model is used to generate age distribu-
tions and tracer concentrations which are then compared. For
example, Weissmann et al. [47] simulated CFC concentrations
and age distributions in a heterogeneous aquifer. The concentra-
tions were used to estimate the mean age and those were then di-
rectly compared to the simulated mean age distribution. Other
mechanistic studies include Varni and Carrera [46], Castro and
Goblet [7], Loáiciga [33], Larocque et al. [28], and Eberts et al.
[15] but most require detailed flow and transport models and are
time consuming to construct. Despite the progress that has been
made through these studies, there is still no single methodology
that can provide reliable estimates of age distributions across the
full range of complex heterogeneity structures present in natural
aquifers. New methods continue to be developed to address this
problem and it is important to consider the circumstances that
they perform well under so that more progress can be made to-
ward the accurate identification of groundwater age distributions.

Recently, Massoudieh and Ginn [35] (abbreviated as M&G here-
after) showed that a unique relationship exists between the mea-
sured concentration of a radiogenic tracer and the groundwater
age distribution, specifically that a measured, normalized concen-
tration of a decaying tracer defines one point on the Laplace trans-
formed age distribution (see Section 2.1). Conceptually, this result
is similar to the relationships shown by Varni and Carrera [46], but
this relates concentrations directly to age distributions and not the
moments of the age distribution (however, we note that if a distri-
bution is Gaussian the first two moments are sufficient for describ-
ing it). If the shape of an age distribution can be parameterized, the
number of different tracers required to uniquely define the age dis-
tribution is exactly the number of parameters that describe the dis-
tribution. This relationship provides a direct link between an
analytical model of tracer migration and the groundwater age dis-
tribution. The approach is promising and could potentially be used
to construct age distributions more easily than previous ap-
proaches, but the method was only outlined by M&G and remains
untested.

The purpose of this article is to evaluate the method of estimat-
ing age distributions that was outlined by M&G in a practical con-
text for several synthetic aquifers with increasingly complicated
heterogeneity structures. This departs from many of the previous
studies on age because we focus exclusively on approximating
the entire age distribution at a sampling location, as opposed to
the mean age at a point or the distribution of mean ages in an aqui-
fer. Moreover, the method differs from LPMs because only a single

sampling event in time will be used. Our approach uses a stream-
tube ensemble based conceptual model for flow and transport,
which is then used to generate estimates of the age distributions
(Section 2). The example applications herein are based on numer-
ical simulations in synthetic aquifers to eliminate uncertainty
about the structure, sources, or boundary conditions of the exam-
ple problems; however, we do consider how the introduction of
measurement and model error will affect the results. Different
combinations of tracers and sampling schemes are evaluated in
our efforts to improve the results obtained from the basic M&G
method while maintaining a focus on simplicity. This study shows
that reasonable estimates of groundwater age distributions can be
found using the M&G approach for all the heterogeneity structures
we consider.

2. Groundwater age

Groundwater age emerges as a special case within the general
concept of residence time or exposure time. Residence time
received its first rigorous treatment in the chemical engineering
literature decades before making its way into hydrology
(e.g. [11,32]). In the 1980’s, additional developments by Maloszewski
and Zuber [34] and Campana [5], amongst others, highlighted
some of the applications of age in a hydrologic context. More re-
cently, age has been used in a variety applications ranging from
groundwater (e.g. [22,30,45,47,49]) and watershed modeling (e.g.
[4,14,40]) to ocean circulation and mixing (e.g. [12,13]). However,
regardless of the physical processes being considered (i.e. ocean,
aquifer, or watershed), the fundamental concepts of an age or res-
idence time distribution remain the same, and the governing equa-
tions are almost identical. This article exclusively focuses on the
case of groundwater age but the concepts can certainly be applied
elsewhere.

The governing equation of groundwater age describes how the
mass density of water is distributed over space, time, and age.
The method we are evaluating uses 1-D effective representations
of age and the corresponding form of the governing differential
equation for the age distribution of a single aqueous phase is:

@qðx; t; aÞ
@t

þ @qðx; t; aÞ
@a

þ v @qðx; t; aÞ
@x

� D
@2qðx; t; aÞ

@x2 ¼ 0 ð1Þ

where q is the distribution of the aqueous phase mass density, x is
the spatial coordinate, t is time, a is age, v is the velocity (m/d), and
D is a hydrodynamic dispersion coefficient (m2/d) [17]. This equa-
tion describes how the water mass itself is distributed over the
space, time, and age dimensions and the conventional mass density
is recovered by integrating (1) over the age dimension. Ginn [19]
derived a more general, multi-dimensional form of Eq. (1) that in-
cluded spatially variable velocity and dispersion coefficients, and
other forms of the age equation are given by Goode [22], Varni
and Carrera [46] but our focus is on the solutions of Eq. (1) for sim-
plicity. Note that if the mass density has reached a steady state, the
time derivative in Eq. (1) is zero and the resulting equation is the
constant coefficient transport equation with age substituting for
time and the mass density replacing concentration.

Basic connections between age and transport can be established
conceptually with nothing more than a rudimentary understand-
ing of flow and transport. If it is assumed that a dilute tracer moves
with a discrete packet of water, and an ensemble of those packets
represents a distribution over age, it is straightforward to recog-
nize that the solute mass will also be distributed over the age
dimension [42]. More rigorous connections involve the moments
of transport and age [23] or the physical mechanics of flow
[19,21], but the close relationship between transport and age is,
potentially, a very powerful link.
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