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a b s t r a c t

A wide variety of techniques have been developed to homogenize transport equations in multiscale and
multiphase systems. This has yielded a rich and diverse field, but has also resulted in the emergence of
isolated scientific communities and disconnected bodies of literature. Here, our goal is to bridge the gap
between formal multiscale asymptotics and the volume averaging theory. We illustrate the methodolo-
gies via a simple example application describing a parabolic transport problem and, in so doing, compare
their respective advantages/disadvantages from a practical point of view. This paper is also intended as a
pedagogical guide and may be viewed as a tutorial for graduate students as we provide historical context,
detail subtle points with great care, and reference many fundamental works.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The effective behavior of multiscale, multiphase materials has
been of interest to researchers from the 19th Century. The earliest
examples include Maxwell’s work on the conductivity of dilute
suspensions [1] and Einstein’s analysis of the viscosity of a dilute
suspension of neutrally buoyant hard spheres [2]. Several precur-
sory ideas were presented in these studies, in particular the con-
cepts of effective conductivity and viscosity. The continued use of
these early results as limit cases or approximate correlations serves
to illustrate how fundamental and remarkable they were. Nowa-
days, effective theories have applications as diverse as composite
materials [3], biological tissues [4], biofilms [5], networks of
large-scale bodies such as buildings [6], the mechanics of masonry
structures [7], reservoirs with large faults [8] or transport in vascu-
lar networks [9].

A typical multiscale problem is illustrated in Fig. 1 for a porous
medium. Pore-scale properties, such as the indicator field describ-
ing the phase geometry, vary rapidly with the spatial coordinates
relative to the scales of the macroscopic domain. In Fig. 1, this is

to say that the characteristic lengthscales l and ‘ are much smaller
than a characteristic large-scale length, L,

l; ‘� L: ð1:1Þ

Discretization of domains that satisfy Eq. (1.1) necessarily yields a
substantial amount of mesh cells, making it challenging to compute
solutions of partial differential equations in such multiscale sys-
tems. A solution to this numerical problem is to adopt a macro-
scopic viewpoint and use models in which high frequency
fluctuations have been filtered out (see Fig. 2).

In most cases, such effective medium approaches were first for-
mulated from an empirical point of view, e.g., Darcy’s law [10], the
dispersion equation [11–13], and the generalized Darcy’s laws for
multiphase flows [14]. Later on, the hypothesis that these descrip-
tions could be obtained theoretically by averaging microscale
equations found its way into the scientific community, before the
sixties, and with a rapid pace thereafter. One of the first fundamen-
tal analyses related to porous media was devised in the fifties by
Taylor [15] and Aris [16]. It was concerned with solute transport
in a Poiseuille flow and deriving an asymptotic equation that
would describe the transport of the average cross-section concen-
tration in a tube. Taylor and Aris showed that this average satisfies
a one-dimensional advection–dispersion equation and that the
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dispersion coefficient is proportional to the square of the Péclet
number. This result is valid only asymptotically (in the long-time
limit), the relevant timescale being the time for a molecule of sol-
ute to travel the entire width of the tube. Hence, the analysis is par-
ticularly useful when the width of the tube is much smaller than
the total length. More generally, this notion of separation of scales,
Eq. (1.1), is central to the development of macroscale theories (see
[17] or [18] for broad historical perspectives on mechanics).

Not only have averaging approaches led to thousands of contri-
butions, but also a proliferation of theoretical frameworks (see [19]
for a review). Generic homogenization techniques include deter-
ministic methods such as volume averaging, multiscale asymptot-
ics, mixture theories and the generalized method of moments (or
Taylor–Aris–Brenner method, see [20]); and stochastic approaches
based on ensemble averaging, i.e., where macroscale quantities are
sought as mathematical expectations [21–24]. These frameworks
led to significant advances in the field and to the development of
new application areas such as optimal design [25] or shape optimi-

zation [26]. However, this enormous volume of works (with little
connection between them) has also resulted in a lot of confusion.
Indeed, how many times have we heard arguments about the rela-
tionship between the different theories, even from the most prom-
inent contributors themselves? Surprisingly, there has been little
effort to clarify these questions. One of the authors remembers
hours of discussion at UC Davis with Stephen Whitaker during,
or after, the visits of known contributors to porous media theories:
Bourgeat, Cushman, Dagan, Gray, to cite a few. These discussions
raised interesting and fundamental questions. However, on only
one occasion did this lead to a public contribution: a short note
(in French) comparing asymptotic homogenization and the method
of volume averaging [27]. The goal that the authors outlined in this
short paper remains largely unachieved and the purpose of this
contribution is to advance further in this direction.

2. Historical background: volume averaging and multiscale
asymptotics

2.1. Volume averaging

The idea underlying volume averaging is that macroscale vari-
ables can be defined through the use of spatial averaging. Early
works in the sixties include [28–31]. For example, Marle [28,29]
tried to justify Darcy’s law using irreversible thermodynamics
and out of equilibrium fundamental relationships (Onsager reci-
procal relations). The idea that macroscale models should be com-
patible with thermodynamical principles was not new (see
[12,32,33]), but the introduction of the volume averaging
framework initiated a highly productive methodology that was

Fig. 1. Illustration of the different coordinate systems and the hierarchy of scales for a priori non-periodic (left-hand side) and periodic (right-hand side) media. The
dimensionalized system corresponds to the spatial variable x where l is a pore-scale characteristic length, ‘ is the size of the averaging volume and L is a macroscale
characteristic length. Further, we have illustrated two additional coordinate systems that correspond to the spatial variables xH (macroscale) and yH (microscale),
nondimensionalized with L and ‘ respectively.

Fig. 2. Schematic diagram illustrating micro- and macroscale descriptions. The
microscale differential operator, L, applying to u, is transformed into a macroscale
operator,M, that involves effective parameters and applies to the average value uh i.
The microscale geometry exhibits high-frequency fluctuations that have been
filtered out in the macroscale geometry.
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